Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T06:46:58.211Z Has data issue: false hasContentIssue false

Microstructure, electrical properties, and thermal stability of Ti-based ohmic contacts to n-GaN

Published online by Cambridge University Press:  31 January 2011

L. L. Smith
Affiliation:
Materials Research Center, North Carolina State University, Raleigh, North Carolina 27695-7919
R. F. Davis
Affiliation:
Materials Research Center, North Carolina State University, Raleigh, North Carolina 27695-7919
R-J. Liu
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
M. J. Kim
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
R. W. Carpenter
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
Get access

Abstract

Single Ti layers, single TiN layers, and thin Ti films overlayered with Au were investigated as ohmic contacts to n-type (n 4.5 × 1017 to 7.4 × 1018 cm−3) single-crystal GaN (0001) films. Transmission line measurements (TLM) revealed the as-deposited TiN and Au/Ti contacts on n = 1.2 − 1018 cm−3 to be ohmic with room-temperature specific contact resistivities of 650 and 2.5 × 107minus;5 Ω cm2, respectively. Single Ti layer contacts had high resistance and were weakly rectifying in the as-deposited condition. The three contact/GaN systems exhibited a substantial decrease in resistivity after annealing; the value of ρc was also a function of the carrier concentration in the GaN. The Au/Ti contacts exhibited the lowest resistivity values yet observed in these contact studies, particularly for the more lightly doped n-GaN. The ρc for n = 1.2 × 1018 cm−3 reached 1.2 × 1026 Ω cm2; for n = 4.5 × 1017 cm−3, ρc = 7.5 × 1025 Ω cm2 after annealing both samples through 900 °C. X-ray photoelectron spectroscopy (XPS) and high-resolution cross-sectional transmission electron microscopy (X-TEM) analysis revealed the formation of TiN at the interface of annealed Ti layers in contact with GaN, which is believed to be beneficial for ohmic contact performance on n-GaN.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shen, T.C., Gao, G. B., and Morkoç, H., J. Vac. Sci. Technol. B 10 (5), 2113 (1992).Google Scholar
2.Williams, R., Modern GaAs Processing Techniques (Artech House, Norwood, MA, 1990).Google Scholar
3.Rideout, V.L., Solid-State Electron. 18, 541 (1975).CrossRefGoogle Scholar
4.Marshall, E.D. and Murakami, M., in Contacts to Semiconductors, edited by Brillson, L. J. (Noyes Publications, Park Ridge, NJ, 1993).Google Scholar
5.Henisch, H.K., Semiconductor Contacts (Clarendon Press, Oxford, 1984).Google Scholar
6.Rhoderick, E.H. and Williams, R. H., Metal-Semiconductor Contacts (Oxford University Press, New York, 1988).Google Scholar
7.Kurtin, S., McGill, T. C., and Mead, C.A., Phys. Rev. Lett. 22 (26), 1433 (1969).CrossRefGoogle Scholar
8.Wittmer, M. and Freeouf, J. L., Phys. Lett. A 173 (2), 190 (1993).CrossRefGoogle Scholar
9.Smith, L.L. and Davis, R. F., in Properties of Group III Nitrides, EMIS DataReview Series No. 11, edited by Edgar, J.H. (INSPEC, Institution of Electrical Engineers, London, 1994).Google Scholar
10.Foresi, J. S., Ohmic Contacts and Schottky Barriers on GaN, M.S. Thesis, Boston University (1992).Google Scholar
11.Foresi, J. S. and Moustakas, T. D., Appl. Phys. Lett. 62 (22), 2859 (1993).Google Scholar
12.Hacke, P., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Appl. Phys. Lett. 63 (19), 2676 (1993).Google Scholar
13.Khan, M.R.H, Detchprohm, T., Hacke, P., Hiramatsu, K., and Sawaki, N., J. Phys. D 28, 1169 (1995).Google Scholar
14.Binari, S.C., Dietrich, H. B., and Kelner, G., Electron. Lett. 30 (11), 909 (1994).CrossRefGoogle Scholar
15.Kampen, T.U. and Mönch, W., Appl. Surf. Sci. 117/118, 388 (1997).CrossRefGoogle Scholar
16.Smith, L.L., Davis, R. F., Kim, M.J., Carpenter, R.W., and Huang, Y., J. Mater. Res. 11, 2257 (1996).CrossRefGoogle Scholar
17.Smith, L.L., Davis, R. F., Kim, M.J., Carpenter, R.W., and Huang, Y., J. Mater. Res. 12, 2249 (1997).CrossRefGoogle Scholar
18.Reeves, G.K. and Harrison, H. B., IEEE Electron Device Lett. EDL–3, 111 (1982).CrossRefGoogle Scholar
19.Woodruff, D.P. and Delchar, T. A., Modern Techniques of Surface Science, 2nd ed. (Cambridge University Press, Cambridge, 1994).Google Scholar
20.Shul'ga, Y.M., Troitskii, V.N., Aivazov, M.I., and Borod'ko, Y. G., Zh. Neorg. Khim. 21, 2621 (1976).Google Scholar
21.Lin, M.E., Ma, Z., Huang, F.Y., Fan, Z. F., Allen, L. H., and Morkoç, H., Appl. Phys. Lett. 64 (8), 1003 (1994).CrossRefGoogle Scholar
22.Porter, L.M., Davis, R.F., Bow, J. S., Kim, M.J., Carpenter, R.W., and Glass, R.C., J. Mater. Res. 10, 668 (1995).CrossRefGoogle Scholar
23.Glass, R.C., Ph.D. Thesis, North Carolina State University (June 1993).Google Scholar
24.Thermochemical Properties of Inorganic Substances, 2nd ed., edited by Knacke, O., Kubaschewski, O., and Hesselmann, K. (Springer-Verlag, Berlin, 1991).Google Scholar
25.Morkoç, H., Strite, S., Gao, G.B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76 (3), 1363 (1994).CrossRefGoogle Scholar
26.Barnes, P.A., Zhang, X-J., Lovejoy, M.L., Drummond, T.J., Hjalmarson, H. P., Crawford, M., Shul, R. J., and Zolper, J. C., in Gallium Nitride and Related Materials, edited by Dupuis, R. D., Edmond, J. A., Nakamura, S., and Ponce, F.A. (Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, PA, 1996).Google Scholar