Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:27:24.662Z Has data issue: false hasContentIssue false

Microstructure and Mechanical Properties of Sm1-xSrxCo0.2Fe0.8O3

Published online by Cambridge University Press:  31 January 2011

Y-S. Chou
Affiliation:
Materials Sciences Department, Pacific Northwest National Laboratory, Richland, Washington 99352
J. W. Stevenson
Affiliation:
Materials Sciences Department, Pacific Northwest National Laboratory, Richland, Washington 99352
T. R. Armstrong
Affiliation:
Materials Sciences Department, Pacific Northwest National Laboratory, Richland, Washington 99352
J. S. Hardy
Affiliation:
Materials Sciences Department, Pacific Northwest National Laboratory, Richland, Washington 99352
K. Hasinska
Affiliation:
Materials Sciences Department, Pacific Northwest National Laboratory, Richland, Washington 99352
L. R. Pederson
Affiliation:
Materials Sciences Department, Pacific Northwest National Laboratory, Richland, Washington 99352
Get access

Abstract

The room temperature mechanical properties of a mixed conducting perovskite Sm1?xSrxCo0.2Fe0.8O3 (x = 0.2 to 0.8) were examined. Density, crystal phase, and microstructure were characterized. It was found that the grain size increased abruptly with increasing Sr content. Mechanical properties of elastic modulus, microhardness, indentation fracture toughness, and biaxial flexure strength were measured. Young's modulus of 180–193 GPa and shear modulus of 70–75 GPa were determined. The biaxial flexure strength was found to decrease with increasing Sr content from ∼70 to ∼20 MPa. The drop in strength was due to the occurrence of extensive cracking. Indentation toughness showed a similar trend to the strength in that it decreased with increasing Sr content from ∼1.1 to ∼0.7 MPa m1/2. In addition, fractography was used to characterize the fracture behavior in these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Teraoka, Y., Zhang, H.M., Okamoto, K., and Yamazoe, N., Mater. Res. Bull. 23, 51 (1988).CrossRefGoogle Scholar
2.Stevenson, J.W., Armstrong, T.R., Carneim, R.D., Pederson, L.R., and Weber, W.J., J. Electrochem. Soc. 143, 2722 (1996).CrossRefGoogle Scholar
3.Chen, C.C., Nasrallah, M.M., Anderson, H.U., and Alim, M.A., J. Electrochem. Soc. 142, 491 (1995).CrossRefGoogle Scholar
4.Sekido, S., Tachibana, H., Yamamura, Y., and Kambara, T., Solid State Ionics 37, 253 (1990).CrossRefGoogle Scholar
5.Kruidof, H., Bouwmeester, H.J.M, Doorn, R.H.E. v., and Burggaaf, A.J., Solid State Ionics, 63–65, 816 (1993).CrossRefGoogle Scholar
6.Teraoka, Y., Nobunaga, T., Okamoto, K., and Yamazoe, N., Solid State Ionics, 48, 207 (1991).CrossRefGoogle Scholar
7.Carter, S., Selcuk, A., Chater, R.J., Kajda, J., Kilner, J.A., and Steele, B.C.H, Solid State Ionics 53–56, 597 (1992).CrossRefGoogle Scholar
8.Ishigaki, T., Yamauchi, S., Kishio, K., Mizusaki, J., and Fueki, K., J. Solid State Chem. 73, 179 (1988).CrossRefGoogle Scholar
9.Mizusaki, J., Yoshihiro, M., Yamauchi, S., and Fueki, K., J. Solid State Chem 58, 257 (1985).CrossRefGoogle Scholar
10.Tai, L-W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R., Solid State Ionics, 76, 272 (1995).Google Scholar
11.Tsai, C-Y., Dixon, A.G., Ma, Y.H., Moser, W.R., and Pascucci, M.R., J. Am. Ceram. Soc. 81, 1437 (1998).CrossRefGoogle Scholar
12.Balachandran, U., Dusek, J.T., Sweeney, S.M., Poeppel, R.B., Mieville, R.L., Maiya, P.S., Kleefisch, M.S., Pei, S., Kobylinski, T.P., and Udovich, C.A., Bose, A.C., Am. Ceram. Soc. Bull. 74, 71 (1995).Google Scholar
13.Steele, B.C., Mater. Sci. Eng. B 13, 79 (1992).CrossRefGoogle Scholar
14.Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
15.Steele, B.C.H, Kelly, I., Middleton, H., and Rudkin, R., Solid State Ionics 28–30, 1547 (1988).CrossRefGoogle Scholar
16.Otsuka, K., Jinno, K., and Morokawa, A., J. Catal. 100, 353 (1986).CrossRefGoogle Scholar
17.Campbell, K.D., Zhang, H., and Lunsford, J.H., J. Phys. Chem. 92, 282 (1963).Google Scholar
18.Jiang, Y., Yentekakis, I.V., and Vayenas, C.G., Science 264, 1563 (1994).CrossRefGoogle Scholar
19.Bates, J.L., Chick, L.A., and Weber, W.J., Solid State Ionics 52, 235 (1992).Google Scholar
20.Bhardwaj, M.C., in Advanced Metal and Ceramic Composites, Proceedings of the International Conference on Advanced Metal & Ceramic Matrix Composites: P/M Processing, Process Modeling & Mechanical Behavior, edited by Bhagat, R.B. (Minerals, Metals & Materials Society, Warrendale, PA, 1990), pp. 115.Google Scholar
21.Kirstein, A.F. and Wooley, R.M., J. Res. Natl. Bur. Stand. 71C(1), 1 (1967).Google Scholar
22.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
23.Murphy, M.W., Armstrong, T.R., and Smith, P.A., J. Am. Ceram. Soc. 80, 165 (1997).CrossRefGoogle Scholar
24.Chou, Y-S., Stevenson, J.W., Armstrong, T.R., and Pederson, L.R. (unpublished).Google Scholar
25.Paulik, S.W., Baskaran, S., and Armstrong, T.R., J. Mater. Sci. 33, 2397 (1998).CrossRefGoogle Scholar
26.Sammes, N.M., Keppeler, F.M., Nafe, H., and Aldinger, F., J. Am. Ceram. Soc. 81, 3104 (1998).CrossRefGoogle Scholar
27.Baskaran, S.S., Lewinsohn, C.A., Chou, Y-S., Qing, M., Stevenson, J.W., and Armstrong, T.R., J. Mater. Sci. 34, 1 (1999).CrossRefGoogle Scholar
28.Cohen, M.L., Phys. Rev. B, 32, 7988 (1985).CrossRefGoogle Scholar
29.Shannon, R.D., Acta Cryst. A 32, 751 (1976).CrossRefGoogle Scholar
30.Hasinska, K., Wachsman, E.D., Stevenson, J.W., and Armstrong, T.R. (unpublished).Google Scholar
31.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics (John Wiley & Sons, New York, 1975), p. 820.Google Scholar
32.Hasselman, D.P.H, Johnson, L.F., Bentsen, L.D., Syed, R., Lee, H.L., and Swain, M.V., Am. Ceram. Soc. Bull. 66, 799 (1987).Google Scholar
33.Ishigaki, T., Yamauchi, S., Kishio, K., Mizusaki, J., and Fueki, K., J. Solid State Chem. 73, 179 (1988).CrossRefGoogle Scholar
34.Armstrong, T.R., Stevenson, J.W., Pederson, L.R., and Raney, P.E., J. Electrochem. Soc. 143, 2919 (1996).CrossRefGoogle Scholar
35.Montross, C.S., Yokokawa, H., Dokiya, M., and Bekessy, L., J. Am. Ceram. Soc. 78, 1869 (1995).CrossRefGoogle Scholar
36.Sammes, N.M., Ratnaraj, R., and Fee, M.G., J. Mater. Sci. 29, 4319 (1994).CrossRefGoogle Scholar
37.Lange, F.F., J. Am. Ceram. Soc. 62, 428 (1979).CrossRefGoogle Scholar
38.Evans, A.G., Heuer, A.H., and Porter, D.L., in Fracture 77, Advances in Research on the Strength and Fracture of Materials, Fourth International Conference on Fracture Vol. 1, edited by Taplin, D.M.R (Pergamon, New York, 1978), pp. 529556.CrossRefGoogle Scholar
39.Swaanson, P.L., Fairbanks, C.J., Lawn, B.R., Mai, Y-W., and Hocky, B.J., J. Am. Ceram. Soc. 70, 279 (1987).CrossRefGoogle Scholar
40.Bansal, G.K., J. Am. Ceram. Soc. 59, 87 (1976).CrossRefGoogle Scholar