Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T23:19:56.620Z Has data issue: false hasContentIssue false

Microstructure and 90° domain assemblages of Pb(Zr, Ti)O3//RuO2 capacitors as a function of Zr-to-Ti stoichiometry

Published online by Cambridge University Press:  31 January 2011

B. A. Tuttle
Affiliation:
Sandia National Laboratories, P.O., Box 5800, Albuquerque, New Mexico 87185
T. J. Headley
Affiliation:
Sandia National Laboratories, P.O., Box 5800, Albuquerque, New Mexico 87185
H.N. Al-Shareef
Affiliation:
Sandia National Laboratories, P.O., Box 5800, Albuquerque, New Mexico 87185
J. A. Voigt
Affiliation:
Sandia National Laboratories, P.O., Box 5800, Albuquerque, New Mexico 87185
M. Rodriguez
Affiliation:
Sandia National Laboratories, P.O., Box 5800, Albuquerque, New Mexico 87185
J. Michael
Affiliation:
Sandia National Laboratories, P.O., Box 5800, Albuquerque, New Mexico 87185
W. L. Warren
Affiliation:
Sandia National Laboratories, P.O., Box 5800, Albuquerque, New Mexico 87185
Get access

Abstract

Planar microstructure, 90° domain configurations, and cross-sectional perovskite grain morphology were characterized for a series of Pb(Zr, Ti)O3//RuO2 thin film capacitors. Perovskite grain size increased substantially with increasing Zr concentration of the Pb(Zr, Ti)O3 (PZT) films, being on the order of 0.15 μm for PZT 20/80 films and 2.5 μm for PZT 50/50 films. While PZT 20/80 and PZT 30/70 films were single phase perovskite, the PZT 40/60 and 50/50 films contained a second phase with fluorite structure. The second phase matrix consisted of two nanophases, one having fluorite structure while the other was amorphous. Both the amorphous nanophase and the fluorite nanophase were Pb deficient compared to the perovskite phase. Differences in cross-sectional perovskite grain morphology were substantial for these materials, with the PZT 40/60 film being almost entirely columnar and the PZT 20/80 film exhibiting almost entirely granular morphology. Differences in 90° domain wall density were essentially negligible among the films, suggesting that if 90° domains were responsible for the differences in electrical properties, it is not due to 90° domain population.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Al-Shareef, H. N., Kingon, A. I., Chen, X., Bellur, K. R., and Auciello, O., J. Mater. Res. 9, 2968 (1994).CrossRefGoogle Scholar
2.Tuttle, B. A., Al-Shareef, H. N., Warren, W. L., Raymond, M. V., Headley, T. J., Voigt, J. A., Evans, J., and Ramesh, R., Microelectronic Engineering 29, 223 (1995).CrossRefGoogle Scholar
3.Tuttle, B. A., Voigt, J.A., Headley, T. J., Potter, B. G., Dimos, D., Schwartz, R. W., Dugger, M. T., Michael, J., Nasby, R. D., Garino, T. J., and Goodnow, D. C., Ferroelectrics 51, 11 (1994).CrossRefGoogle Scholar
4.Ramesh, R. and Lee, J. K., in Integrated Ferroelectrics, edited by Arajuo, C., Proc. 7th Int. Symp. on Integrated Ferroelectrics (accepted) (1995).Google Scholar
5.Chapin, L. N. and Myers, S. A., in Ferroelectric Thin Films, edited by Myers, E. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 231.Google Scholar
6.Kwok, C., Desu, S., and Kammerliner, L., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 83.Google Scholar
7.Schwartz, R. W., Bunker, B. C., Dimos, D., Assink, R. A., Tuttle, B. A., Tallant, D. R., and Weinstock, I. A., Int. Ferroelectrics 2, 243 (1992).CrossRefGoogle Scholar
8.Wilkinson, A. P., Speck, J. S., Ceetham, A. K., Natarajan, S., and Thomas, J. M., Chem. Mater. 6 (6), 750 (1994).CrossRefGoogle Scholar
9.Klee, M., De Veirman, A., and Mackens, U., Philips J. Research 47, 263 (1993).Google Scholar
10.Stewart, W. C. and Cosentino, L. S., Ferroelectrics 1, 149 (1970).CrossRefGoogle Scholar
11.Al-Shareef, H. N., Tuttle, B. A., Warren, W. L., Headley, T. J., Dimos, D., Voigt, J.A., and Nasby, R. D., J. Appl. Phys. 79, 1013 (1996).CrossRefGoogle Scholar
12.Voigt, J. A., Tuttle, B. A., Headley, T. J., and Lamppa, D. L., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 395.Google Scholar
13.Lakeman, C. D. E., Xu, Zhengkui, and Payne, D. A., J. Mater. Res. 10, 2042 (1995).CrossRefGoogle Scholar
14.Tuttle, B. A., Headley, T. J., Bunker, B. C., Schwartz, R. W., Zender, T. J., Hernandez, C. L., Goodnow, D. C., Tissot, R. J., Michael, J., and Carim, A. H., J. Mater. Res. 7, 1876 (1992).CrossRefGoogle Scholar
15.Morosin, B., Lawson, A. C., Kwei, G. H., Voigt, J.A., and Tuttle, B. A., in Neutron Scattering in Materials Science, edited by Neumann, D. A., Russel, T. P., and Wuensch, B. J. (Mater. Res. Soc. Symp. Proc. 376, Pittsburgh, PA, 1996), p. 609.Google Scholar
16.Al-Shareef, H. N., Bellur, K. R., Auciello, O., and Kingon, A. I., Thin Solid Films 256, 73 (1995).CrossRefGoogle Scholar
17.Klee, M., Ru in PZT Thin Films, Proc. 7th Int. Symp. on Integrated Ferroelectrics, ISIF 7 (accepted) (1995).Google Scholar
18.Grill, A., Kane, W., Viggiano, J., Braydym, M., and Labowitz, R., J. Mater. Res. 7, 3260 (1992).CrossRefGoogle Scholar
19.Arlt, G., Ferroelectrics 104, 217 (1990).CrossRefGoogle Scholar
20.Tuttle, B. A., Garino, T. J., Voigt, J. A., Headley, T. J., Dimos, D., and Eatough, M. O., Science and Technology of Electroceramic Thin Films, edited by Auciello, O. and Waser, R. (Kluwer Academic Publishers, The Netherlands, 1995), p. 117.CrossRefGoogle Scholar
21.Warren, W. L., Tuttle, B. A., and Dimos, D., Appl. Phys. Lett. 67, 1426 (1995).CrossRefGoogle Scholar
22.Warren, W. L., Dimos, D., Tuttle, B. A., Pike, G. E., Schwartz, R. W., Clews, P., and McIntyre, D., J. Appl. Phys. 77, 6695 (1995).CrossRefGoogle Scholar