Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T05:23:49.879Z Has data issue: false hasContentIssue false

Microstructural factors influencing the properties of high surface area molybdenum nitride films converted from molybdenum trioxide films deposited via solution spray pyrolysis

Published online by Cambridge University Press:  31 January 2011

S. L. Roberson
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
D. Finello
Affiliation:
U.S. Air Force Research Labs, Munitions Directorate, Eglin AFB, Florida 32542–6810
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
Get access

Abstract

Molybdenum trioxide (MoO3) films, 15 µm thick, have been deposited on 50 µm thick polycrystalline titanium substrates from 250 to 500 °C via liquid spray pyrolysis. Molybdenum pentachloride (MoCl5) dissolved in methanol was used as the molybdenum source; ambient conditions provided the oxygen source. X-ray diffraction (XRD) data indicated that amorphous MoO3 films were produced at deposition temperatures below 400 °C. Randomly orientated polycrystalline MoO3 films were produced at 400 °C and higher deposition temperatures. The deposition temperature also influenced the surface area of the films and their average grain size. Subsequent conversion of the MoO3 films to high surface area (HSA) conductive films containing both γ–Mo2N and δ–MoN was accomplished via programmed reactions with anhydrous NH3 and involved the formation of MoO2 and MoOxN1−x as intermediate phases. The degree of crystallinity, surface area, and average grain size of the MoO3 films strongly influenced the average grain size and surface area of the resultant MoxN films.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lymam, N. R., Moser, F. H., and Hichwa, B. P., SPIE 823, 130 (1987).Google Scholar
2.Thomas, C. L., Catalytic Processes and Proven Catalysts (Academic Press, New York, 1970), p. 114.Google Scholar
3.Banares, M. A., Hu, H., and Wachs, I. E., J. Catalysis 155, 249 (1995).CrossRefGoogle Scholar
4.Desikan, A. N., Zhang, W., and Oyama, S. T., J. Catalysis 157, 740 (1995).CrossRefGoogle Scholar
5.Mastikhin, V. M., Nosov, A. V., Terskikh, V. V., Zamaraev, K. I., and Wachs, I. E., J. Phys. Chem. 98, 13621 (1994).CrossRefGoogle Scholar
6.Kim, D. S., Segawa, K., Soeya, T., and Wachs, I. E., J. Catalysis 136, 539 (1992).CrossRefGoogle Scholar
7.Pak, S., Rosynek, M. P., and Lunsford, J. H., J. Phys. Chem. 98, (1994).CrossRefGoogle Scholar
8.Zhang, W., Desikan, A., and Oyama, S. T., J. Phys. Chem. 99, 14468 (1995).Google Scholar
9.Guerfi, A. and Dao, L. H., J. Electrochem. Soc. 136, 2435 (1989).Google Scholar
10.Boufker, K., J. Appl. Electrochemistry 25, 797 (1995).CrossRefGoogle Scholar
11.Lampert, C. M., Solar Energy Mat. 11, 1 (1984).CrossRefGoogle Scholar
12.Choi, J. G., Curl, R. L., and Thompson, L. T., J. Catalysis 146, 218 (1994).CrossRefGoogle Scholar
13.Choi, J. G., Brenner, J. R., Colling, C. W., Demczyk, B. G., Dunning, J. L., and Thompson, L. T., Catal. Today 15, 201 (1992).CrossRefGoogle Scholar
14.Markel, E. J. and Zee, J. W. V., J. Catal. 126, 643 (1990).Google Scholar
15.Jaggers, C. H., Michaels, J. M., and Stacy, A. M., Chem. Mater. 2, 150 (1990).CrossRefGoogle Scholar
16.Volpe, L. and Boudart, M., J. Solid State Chemistry 59, 332 (1985).CrossRefGoogle Scholar
17.Schlatter, J. C., Oyama, S. T., Metcalf, J. E., and Lambert, J. M., Ind. Eng. Chem. Res. 27, 1648 (1988).CrossRefGoogle Scholar
18.Lee, H. J., Mudholkar, M. S., and Thompson, L. T., in Synthesis and Properties of Advanced Catalytis Materials, edited by Iglesia, E., Lednor, P. W., Nagaki, D. A., and Thompson, L. T. (Mater. Res. Soc. Symp. Proc. 368, Pittsburgh, PA, 1995), p. 57.Google Scholar
19.Abe, H. and Bell, A. T., Catal. Lett. 18, 1 (1993).CrossRefGoogle Scholar
20.Anwar, M. and Hogarth, C. A., Phys. Status Solidi (a) 109, 469 (1988).CrossRefGoogle Scholar
21.Colton, R. J., Guzman, A. M., and Rabalasis, J. W., J. Appl. Phys. 49, 409 (1978).Google Scholar
22.Nagano, M. and Greenblat, M., J. Non-Cryst. Solids 101, 255 (1988).CrossRefGoogle Scholar
23.Tracy, C. E. and Benson, D. K., J. Vac. Sci. Technol. A 4, 2377 (1986).CrossRefGoogle Scholar
24.Okamoto, H., Yamanaka, K., and Kudo, T., Mater. Res. Bull. 21, 551 (1986).Google Scholar
25.Abdelloui, A., Martin, L., and Donnadieu, A., Phys. Status Solidi (a) 109, 455 (1988).Google Scholar
26.Wise, R. S. and Markel, E. J., J. Catalysis 145, 344 (1994).CrossRefGoogle Scholar
27. Aldrich, 1001 Saint Paul Avenue, W., Milwaukee, WI 53233.Google Scholar
28.Lyutaya, M. D., Poroshk. Metall. 3, 278 (1978).Google Scholar