Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T18:28:28.479Z Has data issue: false hasContentIssue false

Microstructural examination in high-strain-rate superplastically deformed tetragonal ZrO2 dispersed with 30 vol% MgAl2O4 spinel

Published online by Cambridge University Press:  03 March 2011

Koji Morita*
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
Keijiro Hiraga
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
Byung-Nam Kim
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
Yoshio Sakka
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The role of MgAl2O4 spinel particle dispersion for attaining high-strain-rate superplasticity (HSRS) was examined in tetragonal ZrO2. Microstructural examination shows that the dispersed spinel particles provide the following positive factors to ZrO2 simultaneously: (i) stable fine grain size by retarding grain growth due to pinning effect; and (ii) enhanced accommodation due to accelerated lattice diffusivity caused by the dissolution of aluminum and magnesium into ZrO2 from the spinel particles, and accelerated relaxation of stress concentrations exerted by grain boundary sliding through dislocation motion. These positive factors make it possible to attain HSRS in ZrO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chokshi, A.H., Mukherjee, A.K., and Langdon, T.G.: Superplasticity in advanced materials. Mater. Sci. Eng., R 10, 237 (1993).CrossRefGoogle Scholar
2Nieh, T.G., Wadsworth, J., and Sherby, O.D.: Superplasticity in Metals and Ceramics Cambridge University Press, 1997.CrossRefGoogle Scholar
3Wakai, F., Sakaguchi, S., and Matsuno, Y.: Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals. Adv. Ceram. Mater. 1, 259 (1986).CrossRefGoogle Scholar
4Nieh, T.G., McNally, C.M., and Wadsworth, J.: Superplastic behavior of a yttria-stabilized tetragonal zirconia polycrystal. Scripta Mater. 22, 1297 (1988).CrossRefGoogle Scholar
5Nieh, T.G. and Wadsworth, J.: Effect of grain-size on superplastic behavior of Y-TZP. Scripta Mater. 24, 763 (1990).CrossRefGoogle Scholar
6Nieh, T.G. and Wadsworth, J.: Superplastic behavior of a fine-grained, yttria-stabilied tetragonal zirconia polycrystal (Y-TZP). Acta Mater. 38, 1121 (1990).CrossRefGoogle Scholar
7Schissler, D.J., Chokshi, A.H., Nieh, T.G., and Wadsworth, J.: Microstructural aspects of superplastic tensile deformation and cavitation failure in a fine-grained yttria stabilized tetragonal zirconia. Acta Mater. 39, 3227 (1991).CrossRefGoogle Scholar
8Kondo, T., Takigawa, Y., Ikuhara, Y., and Sakuma, T.: Critical assessments of tensile ductility in superplastic TZP and TiO2-doped Y-TZP. Mater. Trans., JIM 39, 1108 (1998).CrossRefGoogle Scholar
9Kajihara, K., Yoshizawa, Y., and Sakuma, T.: The enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2-doping. Acta Mater. 43, 1235 (1995).CrossRefGoogle Scholar
10Dillon, R.P., Sosa, S.S., and Mecartney, M.L.: Achieving tensile superplasticity in 8 mol% Y2O3 cubic stabilized ZrO2 through the addition of intergranular silica. Scripta Mater. 50, 1441 (2004).CrossRefGoogle Scholar
11Wakai, F.: A review of superplasticity in ZrO2-toughened ceramics. Br. Ceram. Trans. 88, 205 (1989).Google Scholar
12Wakai, F. and Kato, H.: Superplasticity of TZP/Al2O3 composite. Adv. Ceram. Mater. 3, 71 (1988).CrossRefGoogle Scholar
13Nieh, T.G. and Wadsworth, J.: Superplasticity in fine-grained 20% Al2O3/YTZ composite. Acta Mater. 39, 3037 (1991).CrossRefGoogle Scholar
14Chokshi, A.H., Nieh, T.G., and Wadsworth, J.: Role of concurrent cavitation in the fracture of a superplastic zirconia-alumina composite. J. Am. Ceram. Soc. 74, 869 (1991).Google Scholar
15Nakano, K., Suzuki, T.S., Hiraga, K., and Sakka, Y.: Superplastic tensile ductility enhanced by grain size refinement in a zirconia-dispersed alumina. Scripta Mater. 38, 33 (1998).CrossRefGoogle Scholar
16Kim, B-N., Hiraga, K., Morita, K., and Sakka, Y.: Superplasticity in alumina enhanced by co-dispersion of 10% zirconia and 10% spinel particles. Acta Mater. 49, 887 (2001).CrossRefGoogle Scholar
17Sharif, A.A. and Mecartney, M.L.: Superplasticity in cubic yttria stabilized zirconia with 10 wt% alumina. J. Eur. Ceram. Soc. 24, 2041 (2004).CrossRefGoogle Scholar
18Yoon, C.K. and Chen, I.W.: Superplastic flow of two-phase ceramics containing rigid inclusions-zirconia/mullite composite. J. Am. Ceram. Soc. 73, 1555 (1990).CrossRefGoogle Scholar
19Kim, B-N., Hiraga, K., Morita, K., and Sakka, Y.: A high-strain-rate superplastic ceramics. Nature 413, 288 (2001).CrossRefGoogle Scholar
20Kim, B-N., Hiraga, K., Morita, K., Sakka, Y., and Yamada, T.: Enhanced tensile ductility in ZrO2-Al2O3-spinel composite ceramic. Scripta Mater. 47, 775 (2002).CrossRefGoogle Scholar
21Morita, K., Hiraga, K., and Sakka, Y.: High-strain-rate superplasticity in Y2O3-stabilized tetragonal ZrO2 dispersed with 30 vol% MgAl2O4 spinel. J. Am. Ceram. Soc. 85, 1900 (2002).CrossRefGoogle Scholar
22Morita, K., Kim, B-N., Hiraga, K., and Sakka, Y.: High-strain-rate superplasticity in 3Y-TZP dispersed with 30 vol% spinel particle. Mater. Sci. Forum 447–448, 329 (2004).CrossRefGoogle Scholar
23Hiraga, K., Nakano, K., Suzuki, T.S., and Sakka, Y.: Processing-dependent microstructural factors affecting cavitation damage and tensile ductility in a superplastic alumina with zirconia. J. Am. Ceram. Soc. 85, 2763 (2002).CrossRefGoogle Scholar
24Wurst, J.C. and Nelson, J.A.: Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J. Am. Ceram. Soc. 55, 109 (1972).CrossRefGoogle Scholar
25Grain, C.F.: Phase relations in the ZrO2-MgO system. J. Am. Ceram. Soc. 50, 288 (1967).CrossRefGoogle Scholar
26Suzuki, T.S., Sakka, Y., Morita, K., and Hiraga, K.: Enhanced superplasticity in a alumina-containing zirconia prepared by colloidal processing. Scripta Mater. 43, 705 (2000).CrossRefGoogle Scholar
27Nishizawa, T.: Grain growth in single- and dual-phase steels. Tetsu to Hagane 70, 194 (1984).CrossRefGoogle Scholar
28Zhao, J., Ikuhara, Y., and Sakuma, T.: Grain growth of silica-added zirconia annealed in the cubic/tetragonal two-phase region. J. Am. Ceram. Soc. 81, 2087 (1998).CrossRefGoogle Scholar
29Nieh, T.G. and Wadsworth, J.: Dynamic grain growth during superplastic deformation of yttria-stabilized tetragonal zirconia polycrystals. J. Am. Ceram. Soc. 72, 1469 (1989).CrossRefGoogle Scholar
30Langdon, T.G.: The mechanical-properties of superplastic materials. Metall. Trans. 13A, 689 (1982).CrossRefGoogle Scholar
31Kim, W.J., Wadsworth, J., and Sherby, O.D.: Tensile ductility of superplastic ceramics and metallic alloys. Acta Mater. 39, 199 (1991).CrossRefGoogle Scholar
32Morita, K. and Hiraga, K.: Deformed substructures in fine-grained tetragonal zirconia. Philos. Mag. Lett. 81, 311 (2001).CrossRefGoogle Scholar
33Swaroop, S., Kilo, M., Argirusis, C., Borchardt, G., and Chokshi, A.H.: Lattice and grain-boundary diffusion in 3YTZP analyzed using SIMS. Acta Mater. 53, 4975 (2005).CrossRefGoogle Scholar
34Hellman, P. and Hillert, M.: On the effect of second-phase particles on grain growth. Scand. J. Metall. 4, 211 (1975).Google Scholar
35Kim, B-N.: Modeling grain growth behavior inhibited by dispersed particles. Acta Mater. 49, 543 (2001).CrossRefGoogle Scholar
36Okada, K., Yoshizawa, Y., and Sakuma, T.: Grain-size distribution in Al2O3-ZrO2 generated by high-temperature annealing. J. Am. Ceram. Soc. 74, 2820 (1991).CrossRefGoogle Scholar
37Wakai, F., Kodama, Y., and Nagano, T.: Superplasticity of ZrO2 polycrystals. Jpn. J. Appl. Phys. 28, 69 (1989).Google Scholar
38Morita, K. and Hiraga, K.: Reply to “Comment on the role of intragranular dislocations in superplastic yttria-stabilized zirconia.” Scripta Mater. 48, 1403 (2003).CrossRefGoogle Scholar
39Rachinger, W.A.: Relative grain translations in the plastic flow of aluminum. J. Inst. Met. 81, 33 1952-1953.Google Scholar
40Owen, D.M. and Chokshi, A.H.: The high temperature mechanical characteristics of superplastic 3 mol% yttria stabilized zirconia. Acta Mater. 46, 667 (1998).CrossRefGoogle Scholar
41Jiménez-Melendo, M., Domínguez-Rodríguez, A., and Bravo-León, A.: Superplastic flow of fine-grained yttria-stabilized zirconia polycrystals: Constitutive equation and deformation mechanisms. J. Am. Ceram. Soc. 81, 2761 (1998).CrossRefGoogle Scholar
42Morita, K. and Hiraga, K.: Critical assessment of high-temperature deformation and deformed microstructure in high-purity tetragonal zirconia containing 3 mol% yttria. Acta Mater. 50, 1075 (2002).CrossRefGoogle Scholar
43Addad, A., Crampon, J., Guinebretière, R., Dauger, A., and Duclos, R.: Grain boundary sliding-induced deformation in a 30 wt% zirconia-spinel composite: Influence of stress. J. Eur. Ceram. Soc. 20, 2063 (2000).CrossRefGoogle Scholar
44Duclos, R., Crampon, J., and Carry, C.: Grain-boundary sliding and accommodation mechanism during creep of yttria-partially-stabilized zirconia. Philos. Mag. Lett. 82, 529 (2002).CrossRefGoogle Scholar
45Addad, A., Crampon, J., Guinébretiere, R., Dauger, A., and Duclos, R.: Grain boundary sliding-induced deformation in a 30 wt% zirconia-spinel composite: influence of stress. J. Eur. Ceram. Soc. 20, 2063 (2000).CrossRefGoogle Scholar
46Morita, K., Kim, B-N., Hiraga, K., and Sakka, Y.: A threshold stress for the superplastic deformation in Y2O3-stabilized tetragonal ZrO2. Mater. Sci. Eng., A 387–389, 655 (2004).CrossRefGoogle Scholar
47Cheong, D.S., Domínguez-Rodríguez, A., and Heuer, A.H.: High-temperature plastic deformation of Y2O3-Stabilized ZrO2 single crystals III. Variation in work hardening between 1200 and 1500 °C. Philos. Mag. A 63, 377 (1991).CrossRefGoogle Scholar
48Donlon, W.T., Mitchell, T.E., and Heuer, A.H.: Work softening in stoichiometric spinel (MgAl2O4). Philos. Mag. A 45, 1013 (1982).CrossRefGoogle Scholar
49Hwang, C-M.J. and Chen, I-W.: Effect of a liquid phase on superplasticity of 2-mol%-Y2O3-stabilized tetragonal zirconia polycrystals. J. Am. Ceram. Soc. 73, 1626 (1990).CrossRefGoogle Scholar
50Charit, I. and Chokshi, A.H.: Experimental evidence for diffusion creep in the superplastic 3 mol% yttria-stabilized tetragonal zirconia. Acta Mater. 49, 2239 (2001).CrossRefGoogle Scholar
51Morita, K., Kim, B-N., Hiraga, K., and Sakka, Y.: Yield drop in high-strain-rate superplastic deformation of ZrO2-30vol%MgAl2O4 spinel composite. Philos. Mag. Lett. 83, 533 (2003).CrossRefGoogle Scholar
52Mimurada, J., Nakano, M., Sasaki, K., Ikuhara, Y., and Sakuma, T.: Effect of cation doping on the superplastic flow in yttria-stabilized tetragonal zirconia polycrystals. J. Am. Ceram. Soc. 84, 1817 (2001).CrossRefGoogle Scholar
53Sato, E., Morioka, H., Kuribayashi, K., and Sundarereman, D.: Effect of small amount of alumina doping on superplastic behavior of tetragonal zirconia. J. Mater. Sci. 34, 4551 (1999).CrossRefGoogle Scholar
54Satou, T., Hosaka, F., Sato, E., Matsushita, J., Otsuka, M., and Kuribayashi, K.: Superplastic deformation behavior of undoped and doped high-purity 3Y-TZP. Mater. Sci. Forum 357–359, 117 (2001).CrossRefGoogle Scholar
55Yoshida, H., Okada, K., Ikuhara, Y., and Sakuma, T.: Improvement of high-temperature creep resistance in fine-grained Al2O3 by Zr4+ segregation in grain boundaries. Philos. Mag. Lett. 76, 9 (1997).CrossRefGoogle Scholar
56Wakai, F., Nagano, T., and Iga, T.: Hardening in creep of alumina by zirconium segregation at the grain boundary. J. Am. Ceram. Soc. 80, 2361 (1997).CrossRefGoogle Scholar
57Owen, D.M. and Chokshi, A.H.: The constant stress tensile creep behavior of a superplastic zirconia-alumina composite. J. Mater. Sci. 29, 5467 (1994).CrossRefGoogle Scholar
58Morita, K., Hiraga, K., and Kim, B.-N.: to be submitted.Google Scholar
59Chokshi, A.H., Yoshida, H., Ikuhara, Y., and Sakuma, T.: The influence of trace elements on grain boundary processes in yttria-stabilized tetragonal zirconia. Mater. Lett. 57, 4196 (2003).CrossRefGoogle Scholar
60Yang, S-Y., Lee, J-H., Kim, J-J., and Lee, J-S.: Sintering behavior of Y-doped ZrO2 ceramics: The effect of Al2O3 and Nd2O5 addition. Solid State Ionics 172, 413 (2004).CrossRefGoogle Scholar
61Owen, D.M., Chokshi, A.H., and Nutt, S.T.: Nucleation and growth characteristics of cavities during the early stage of tensile creep deformation in a superplastic zirconia-20 wt% alumina composite. J. Am. Ceram. Soc. 80, 2433 (1997).CrossRefGoogle Scholar
62Donlon, W.T., Heuer, A.H., and Mitchell, T.E.: Compositional softening in Mg-Al spinel. Philos. Mag. 78, 615 (1998).CrossRefGoogle Scholar
63Hiraga, K., Kim, B-N., Morita, K., Suzuki, T.S., and Sakka, Y.: Microstructural design for high-strain-rate superplastic oxide ceramics. J. Ceram. Soc. Japan 113, 191 (2005).CrossRefGoogle Scholar