Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:44:59.267Z Has data issue: false hasContentIssue false

Microstructural evolution of dense and porous pyroelectric Pb1−xCaxTiO3 thin films

Published online by Cambridge University Press:  31 January 2011

Andreas Seifert
Affiliation:
Laboratoire de Céramique, Département des Matériaux, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Laurent Sagalowicz
Affiliation:
Laboratoire de Céramique, Département des Matériaux, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Paul Muralt
Affiliation:
Laboratoire de Céramique, Département des Matériaux, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Nava Setter
Affiliation:
Laboratoire de Céramique, Département des Matériaux, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Get access

Abstract

Pb1−xCaxTiO3 thin films with x = 0−0.3 for pyroelectric applications were deposited on platinized silicon wafers by chemical solution processing. Ca-substitution for Pb in PbTiO3 results in a reduced c/a ratio of the unit cell, which, in turn, leads to better pyroelectric properties. Control of nucleation and growth during rapid thermal annealing to 650 °C allowed the formation of either highly porous or dense (111) oriented films. The inclusion of pores creates a matrix-void composite with the low permittivity desired for pyroelectric applications, resulting in a high figure of merit. The growth mechanisms for the microstructural evolution of both dense and porous films were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Rutherford backscattering spectrometry and allowed establishment of microstructure/property relationships.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Whatmore, R. W., Rep. Prog. Phys. 49, 1335 (1986).Google Scholar
2.Muralt, P., Rep. Prog. Phys. (in press).Google Scholar
3.Ikeda, T., J. Phys. Soc. Jpn. 13, 335 (1958).CrossRefGoogle Scholar
4.Muralt, P., Maeder, T., Sagalowicz, L., Scalese, S., Naumovic, D., Agostino, R. G., Xanthopolus, N., Mathieu, H. J., Patthey, L., and Bullock, E.L., J. Appl. Phys. 83, 3835 (1998).CrossRefGoogle Scholar
5.Moulson, A. J. and Herbert, J. M., Electroceramics (Chapman and Hall, London, 1990).Google Scholar
6.Muralt, P., Revue de l'électricité de de l'électronique 9, 56 (1996).CrossRefGoogle Scholar
7.Newnham, R., Skinner, D. P., and Cross, L. E., Mater. Res. Bull. 13, 525 (1978).Google Scholar
8.Seifert, A., Muralt, P., and Setter, N., in Proceedings of the 5th International Conference on Electronic Ceramics and Applications, Aveiro, Portugal, 1996 (European Ceramic Society), p. 329.Google Scholar
9.Gurkovich, S. R. and Blum, J. B., in Ultrastructure Processing of Ceramics, Glasses and Composites (Wiley-Interscience, New York, 1984), p. 152.Google Scholar
10.Calzada, M. L., Carmona, F., Sirera, R., and Jimenez, B., in Science and Technology of Electroceramic Thin Films (Kluwer Academic Publishers, The Netherlands, 1995), p. 157.CrossRefGoogle Scholar
11.Blum, J. B. and Gurkovich, S. R., J. Mater. Sci. 20, 4479 (1985).CrossRefGoogle Scholar
12.Tani, T. and Payne, D. A., J. Am. Ceram. Soc. 77, 1242 (1994).CrossRefGoogle Scholar
13.Wilkinson, A. P., Speck, J. S., Cheetham, A. K., Natarajan, S., and Thomas, J. M., Chem. Mater. 6, 750 (1994).CrossRefGoogle Scholar
14.Seifert, A., Lange, F. F., and Speck, J. S., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
15.Brinker, C. J. and Scherer, G.W., Sol-gel Science. The Physics and Chemistry of Sol-gel Processing (Academic Press, San Diego, CA, 1990).Google Scholar
16.Chewasatn, S. and Milne, S. J., J. Mater. Sci. 32, 575 (1997).Google Scholar
17.Tu, J. L. and Milne, S. J., J. Mater. Res. 11, 2556 (1996).CrossRefGoogle Scholar
18.Hartley, N. P., Squire, P. T., and Putley, E. H., J. Phys. E 5, 787 (1972).CrossRefGoogle Scholar
19.Daglish, M., Int. Ferroelectrics, (in press).Google Scholar
20.Seifert, A., Muralt, P., and Setter, N., Appl. Phys. Lett. 72, 2409 (1998).CrossRefGoogle Scholar
21.Lakeman, C., Ph.D. Thesis, Univ. of Illinois, 1994.Google Scholar
22.Kingon, A. I. and Clark, B. C., J. Am. Ceram. Soc. 66, 256 (1983).CrossRefGoogle Scholar
23.Brown, H. E., Lead Oxide–Properties and Applications (Int. Lead Zinc Research Organization Inc., New York, 1985).Google Scholar
24.Subramanian, M.A., Aravamudan, G., and Rao, G.V. S., Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
25.Kwok, C. K. and Desu, S. B., Appl. Phys. Lett. 60, 1430 (1992).CrossRefGoogle Scholar
26.Sirera, R., Malic, M., Kosec, M., and Calzada, M. L., in Proceedings of the 5th International Conference on Electronic Ceramics and Applications, Aveiro, Portugal, 1996 (European Ceramic Society), p. 333.Google Scholar
27.Hu, H., Peng, C.J., and Krupanidhi, S.B., Thin Solid Films 223, 327 (1993).CrossRefGoogle Scholar
28.Hsueh, C.H., Evans, A. G., and Coble, R.L., Acta Metall. 30, 1269 (1982).CrossRefGoogle Scholar
29.Levi, C.G., Acta Mater. 46, 787 (1998).CrossRefGoogle Scholar
30.Krishnaswamy, S.V., Messier, R., Swab, P., Tongson, L. L., and Vedam, K., J. Electr. Mater. 10, 433 (1981).CrossRefGoogle Scholar
31.Arlt, G., Ferroelectrics 76, 451 (1987).CrossRefGoogle Scholar
32.Arlt, G. and Pertsev, N. A., J. Appl. Phys. 70, 2283 (1991).CrossRefGoogle Scholar
33.Carl, K. and Härdtl, K. H., Ferroelectrics 17, 473 (1978).CrossRefGoogle Scholar
34.Baiatu, T., Waser, R., and Hardtl, K-H., J. Am. Ceram. Soc. 73, 1663 (1990).CrossRefGoogle Scholar
35.Scott, J. F., Araujo, C. A., Melnick, B. M., McMillan, L.D., and Zuleeg, R., J. Appl. Phys. 70, 382 (1991).Google Scholar
36.Warren, W.L., Pike, G. E., Vanheusden, K., Dimos, D., Tuttle, B. A., and Robertson, J., J. Appl. Phys. 79, 9250 (1996).CrossRefGoogle Scholar
37.Kohli, M., Muralt, P., and Setter, N., Appl. Phys. Lett. 72, 3217 (1998).CrossRefGoogle Scholar
38.Kohli, M., Seifert, A., and Muralt, P., Int. Ferroelectrics 22, 453 (1998).CrossRefGoogle Scholar
39.Kohli, M., Wuethrich, C., Brooks, K., Willing, B., Forster, M., Muralt, P., Setter, N., and Ryser, P., Sensors and Actuators A 60, 147 (1997).CrossRefGoogle Scholar
40.Shorroks, N. M., Patel, A., Walker, M.J., and Parsons, A.D., Microelectronic Eng. 29, 59 (1995).CrossRefGoogle Scholar
41.Yamaka, E., Watanabe, H., Kimura, H., Kanaya, H., and Ohkuma, H., J. Vac. Sci. Technol. A 6, 2921 (1988).CrossRefGoogle Scholar