Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T07:19:03.588Z Has data issue: false hasContentIssue false

Microstructural evolution and mechanical properties of Mg–Cu–Zn ultrafine eutectic composites

Published online by Cambridge University Press:  31 January 2011

Ki B. Kim*
Affiliation:
Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Gwnagjin-gu, Seoul 143-747, Korea
Do H. Kim
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seodaemungu, Seoul 120-749, Korea
Jaeseoul Lee
Affiliation:
Korea Institute of Industrial Technology (KITECH), Buk-gu, Gwangju 500-480, Korea
Jun-Sik Park
Affiliation:
Division of Advanced Materials Engineering, Hanbat National University, Daejoen 305-719, Korea
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Novel ultrafine eutectic composites containing structural and spatial heterogeneities have been systematically developed in an Mg–Cu–Zn ternary system. Microstructural investigations of the ultrafine eutectic composites revealed that the bimodal eutectic structure consists of a mixture of cellular-type fine (α-Mg + MgZn2) and anomalous-type coarse (α-Mg + MgZn2 + MgCuZn) eutectic structures. An Mg72Cu5Zn23 alloy composed of the bimodal eutectic structure without micron-scale α-Mg dendrites presents a strong improvement of yield strength up to 455 MPa with a decent plastic strain of 5%. The rotation of the bimodal eutectic colony along the interfaces is considered to be an effective way to dissipate the stress localization thus enhancing the macroscopic plasticity.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1He, G., Ekert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003)Google Scholar
2Park, J.M., Sohn, S.W., Kim, T.E., Kim, D.H., Kim, K.B., and Kim, W.T.: Nanostructure-dendrite composites in the Fe–Zr binary alloy system exhibiting high strength and plasticity. Scr. Mater. 57, 1153 (2007)CrossRefGoogle Scholar
3Louzguine, D.V., Louzguina, L.V., and Inoue, A.: Deformation behavior of high strength metastable hypereutectic Ti–Fe–Co alloys. Intermetallics 15, 181 (2007)CrossRefGoogle Scholar
4Eckert, J., Das, J., He, G., Calin, M., and Kim, K.B.: Ti-base bulk nanostructure-dendrite composites: Microstructure and deformation. Mater. Sci. Eng., A 449, 24 (2007)CrossRefGoogle Scholar
5Ma, E.: Controlling plastic instability. Nat. Mater. 2, 7 (2003)CrossRefGoogle ScholarPubMed
6Kim, K.B., Das, J., Xu, W., Zhang, Z.F., and Eckert, J.: Microscopic de-formation mechanism of a Ti66.1Nb13.9Ni4.8Cu8Sn7.2 nanostructure-dendrite composite. Acta Mater. 54, 3701 (2006)CrossRefGoogle Scholar
7He, G., Löser, W., and Eckert, J.: In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51, 5223 (2003)CrossRefGoogle Scholar
8Park, J.M., Kim, T.E., Sohn, S.W., Kim, D.H., Kim, K.B., Kim, W.T., and Eckert, J.: High strength Ni–Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys.Lett. 93, 031913 (2008)CrossRefGoogle Scholar
9Louzguine, D.V., Louzguina, L.V., Kato, H., and Inoue, A.: Investigation of Ti–Fe–Co bulk alloys with high strength and enhanced ductility. Acta Mater. 53, 2009 (2005)CrossRefGoogle Scholar
10Park, J.M., Kim, K.B., Kim, W.T., Lee, M.H., Eckert, J., and Kim, D.H.: High strength ultrafine eutectic Fe–Nb–Al composites with enhanced plasticity. Intermetallics 16, 642 (2008)CrossRefGoogle Scholar
11Shi, L.L., Ma, H., Liu, T., Xu, J., and Ma, E.: Micostructure and compressive properties of chill-cast Mg–Al–Ca alloys. J. Mater. Res. 21, 613 (2006)CrossRefGoogle Scholar
12Shi, L.L., Xu, J., and Ma, E.: Mg–Al–Ca in-site composites with a refined eutectic structure and their compressive properties. Metall. Mater. Trans. A 39, 1225 (2008)CrossRefGoogle Scholar
13Park, J.M., Kim, D.H., Kim, K.B., Lee, M.H., Kim, W.T., and Eckert, J.: Influence of heterogeneities with different length scale on the plasticity of Fe-base ultrafine eutectic alloys. J. Mater. Res. 23, 2003 (2008)CrossRefGoogle Scholar
14Das, J., Ettingshausen, F., and Eckert, J.: Ti-base nanoeutectic-hexagonal structured (D019) dendrite composite. Scr. Mater. 58, 631 (2007)CrossRefGoogle Scholar
15Kim, K.B., Das, J., Baier, F., and Eckert, J.: Microstructural investigation of a deformed Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite. J. Alloys Compd. 82, 4690 (2007)Google Scholar
16Das, J., Kim, K.B., Baier, F., Löser, W., and Eckert, J.: High-strength Ti-base ultrafine eutectic with enhanced ductility. Appl. Phys. Lett. 87, 161907 (2005)CrossRefGoogle Scholar
17Park, J.M., Kim, D.H., Kim, K.B., and Kim, W.T.: Deformation-induced rotational eutectic colonies containing length-scale het-erogeneity in an ultrafine eutectic Fe83Ti7Zr6B4 alloy. Appl. Phys. Lett. 91, 131907 (2007)CrossRefGoogle Scholar
18Han, J.H., Yi, S., Park, J.M., Sohn, S.W., Kim, T.E., Kim, D.H., and Kim, K.B.: Formation of a bimodal eutectic structure in Ti–Fe–Sn alloys with enhanced plasticity. Appl. Phys. Lett. 93, 141901 (2008)CrossRefGoogle Scholar
19Song, K.A., Lee, J.S., Park, J.S., and Kim, K.B.: Effect of additional Zn on plasticity of large-scale Mg-based nanostructure-dendrite composites. Met. Mater. Int. 15, 175 (2009)CrossRefGoogle Scholar
20Song, K.A., Park, J.M., Lee, J.S., Park, J.S., Lee, W.H., Kim, D.H., and Kim, K.B.: Development of high strength Mg–Cu–Zn ultra-fine eutectic composites with enhanced plasticity. Int. J. Mod. Phys. 23, 947 (2009)CrossRefGoogle Scholar
21Villars, P., Prince, A., and Okamoto, H.: Ternary alloy phase diagram. ASM International 10, 9665 (1995)Google Scholar
22Flemings, M.C.: Solidification Processing (The Maple Press, New York, 1974), pp. 58–87.Google Scholar
23Sun, B.B., Sui, M.L., Wang, Y.M., He, G., Eckert, J., and Ma, E.: Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility. Acta Mater. 54, 1349 (2006)CrossRefGoogle Scholar
24Qiang, J.B., Zhang, W., and Inoue, A.: Formation and compression mechanical properties of Ni–Zr–Nb–Pd bulk metallic glasses. J. Mater. Res. 23, 1940 (2008)CrossRefGoogle Scholar
25Park, E.S., Chang, H.J., Kyeong, J.S., and Kim, D.H.: Role of minor addition of metallic alloying elements in formation and properties of Cu–Ti-rich bulk metallic glasses. J. Mater. Res. 23, 1995 (2008)CrossRefGoogle Scholar
26Bruck, H.A., Rosakis, A.J., and Johnson, W.L.: The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 (1996)CrossRefGoogle Scholar