Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T10:12:14.080Z Has data issue: false hasContentIssue false

Microstructural and Ferroelectric Properties of a Chemical Solution Deposited Epitaxial PbZr0.5 Ti0.5O3 Thin Film on a SrRuO3/SrTiO3 Substrate

Published online by Cambridge University Press:  31 January 2011

J. H. Kim
Affiliation:
Materials Department and Materials Research Laboratory, College of Engineering, University of California, Santa Barbara, California 93106
A. T. Chien
Affiliation:
Materials Department and Materials Research Laboratory, College of Engineering, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Department and Materials Research Laboratory, College of Engineering, University of California, Santa Barbara, California 93106
L. Wills
Affiliation:
Solid State Technology Laboratory, Solid State Materials Department, Hewlett-Packard Labs, 3500 Deer Creek Rd., 26M-7, Palo Alto, California 94304
Get access

Abstract

Epitaxial PbZr0.5Ti0.5O3 (PZT) thin films were grown on top of a SrRuO3 epitaxial electrode layer on a (100) SrTiO3 substrate by the chemical solution deposition method at 600 °C. The microstructure of the PZT thin film was investigated by x-ray diffraction and transmission electron microscopy, and the ferroelectric properties were measured using the Ag/PZT/SRO capacitor structure. The PZT thin film has the epitaxial orientational relationship of (001) [010]PZT ║ (001) [010]SRO ║ (001) [010]STO with the substrate. The remnant (Pr ) and saturation polarization (Ps) density were measured to be Pr ~ 51.4 µC/cm2 and Ps ~ 62.1 µC/cm2 at 5 V, respectively. Ferroelectric fatigue measurements show that the net-switching polarization begins to drop (to 98% of its initial value) after 7 × 108 cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, F. and Leppavuori, S., J. Appl. Phys. 82, 1293 (1997).CrossRefGoogle Scholar
2.De Veirman, A.E. M., Cillessen, J. F. M., De Keijser, M., Wolf, R. M., Taylor, D. J., Staals, A. A., and Dormans, G. J. M., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 329.Google Scholar
3.Ghonge, S. G., God, E., Ramesh, R., Sands, T., and Keramidas, V. G., Appl. Phys. Lett. 63, 1628 (1993).CrossRefGoogle Scholar
4.Tiwari, P., Zheleva, T., and Narayan, J., Appl. Phys. Lett. 63, 30 (1993).CrossRefGoogle Scholar
5.Lee, J., Johnson, L., Safari, A., Ramesh, R., Sands, T., Gilchrist, H., and Keramidas, V. G., Appl. Phys. Lett. 63, 27 (1993).CrossRefGoogle Scholar
6.Bjormander, C., Grishin, A. M., Moon, B. M., Lee, J., and Rao, K. V., Appl. Phys. Lett. 64, 3646 (1994).CrossRefGoogle Scholar
7.Ansari, P. H. and Safari, A., Int. Ferroelectrics 7, 185 (1995).CrossRefGoogle Scholar
8.Foster, C. M., Bai, G-R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L. A., Carr, E., and Amano, J., J. Appl. Phys. 81, 2349 (1997).CrossRefGoogle Scholar
9.de Keijser, M., Cillessen, J.F. M., Janssen, R. B. F., de Veirman, A. E. M., and de Leeuw, D. M., J. Appl. Phys. 79, 393 (1996).CrossRefGoogle Scholar
10.Suga, M., Hiratani, M., Okazaki, C., Koguchi, M., Kakibayashi, H., Int. Ferroelectrics 18, 389 (1997).CrossRefGoogle Scholar
11.Eom, C. B., Van Dover, R. B., Phillips, J. M., Werder, D. J., Marshall, J. H., Chen, C. H., Cava, R. J., Fleming, R. M., and Fork, D. K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
12.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 65, 2717 (1988).CrossRefGoogle Scholar
13.Hase, T. and Shiosaki, T., Jpn. J. Appl. Phys. 30, 2159 (1991).CrossRefGoogle Scholar
14.Aoki, K., Murayama, I., Fukuda, Y., and Nixhimura, A., Jpn. J. Appl. Phys. 36, L690 (1997).CrossRefGoogle Scholar
15.Budd, K. D., Dey, S. K., and Payne, D. A., Brit. Ceram. Proc. 36, 107 (1985);Google Scholar
Budd, K. D., Ph.D. Thesis, University of Illinois at Urbana-Champaign (1986).Google Scholar
16.Seifert, A., Lange, F. F., and Speck, J., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
17.Takayama, R. and Tomita, Y., J. Appl. Phys. 65, 1666 (1989).CrossRefGoogle Scholar