Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T16:05:02.117Z Has data issue: false hasContentIssue false

Micromechanical model for hydroxyapatite whisker reinforced polymer biocomposites

Published online by Cambridge University Press:  01 August 2006

Weimin Yue
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
Ryan K. Roeder*
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A micromechanical model was developed to predict the elastic moduli of hydroxyapatite (HA) whisker reinforced polymer biocomposites based upon the elastic properties of each phase and the reinforcement volume fraction, morphology, and preferred orientation. The effects of the HA whisker volume fraction, morphology, and orientation distribution were investigated by comparing model predictions with experimentally measured elastic moduli for HA whisker reinforced high-density polyethylene composites. Predictions using experimental measurements of the HA whisker aspect ratio distribution and orientation distribution were also compared to common idealized assumptions. The best model predictions were obtained using the experimentally measured HA whisker aspect ratio distribution and orientation distribution.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bonfield, W., Grynpas, M.D., Tully, A.E., Bowman, J., Abram, J.: Hydroxyapatite reinforced polyethylene—A mechanically compatible implant material for bone-replacement. Biomaterials 2, 185 (1981).CrossRefGoogle ScholarPubMed
2.Bonfield, W.: Composites for bone replacement. J. Biomed. Eng. 10, 522 (1988).CrossRefGoogle ScholarPubMed
3.Bonfield, W., Bowman, J.A. and Grynpas, M.D.: Composite material for use in orthopaedics, U.S. Patent No. 5 017 627 (1991).Google Scholar
4.Ladizesky, N.H., Ward, I.M., Bonfield, W.: Hydroxyapatite/high-performance polyethylene fibre composites for high-load-bearing bone replacement materials. J. Appl. Polym. Sci. 65, 1865 (1997).3.0.CO;2-D>CrossRefGoogle Scholar
5.Wang, M., Joseph, R., Bonfield, W.: Hydroxyapatite-polyethylene composites for bone substitution: Effects of ceramic particle size and morphology. Biomaterials 19, 2357 (1998).CrossRefGoogle ScholarPubMed
6.Bonner, M., Saunders, L.S., Ward, I.M., Davies, G.W., Wang, M., Tanner, K.E., Bonfield, W.: Anisotropic mechanical properties of oriented HAPEXTM. J. Mater. Sci. 37, 325 (2002).CrossRefGoogle Scholar
7.Di Silvio, L., Dalby, M.J., Bonfield, W.: Osteoblast behaviour on HAP/PE composite surfaces with different HA volumes. Biomaterials 23, 101 (2002).CrossRefGoogle Scholar
8.Harper, E.J., Behiri, J.C., Bonfield, W.: Flexural and fatigue properties of a bone cement based upon polyethylmethacrylate and hydroxyapatite. J. Mater. Sci.: Mater. Med. 6, 799 (1995).Google Scholar
9.Watson, K.E., Tenhuisen, K.S., Brown, P.W.: The formation of hydroxyapatite-calcium polyacrylate composites. J. Mater. Sci.: Mater. Med. 10, 205 (1999).Google ScholarPubMed
10.Greish, Y.E., Brown, P.W.: An evaluation of mechanical property and microstructural development in HAp-Ca polycarboxylate biocomposites prepared by hot pressing. J. Biomed. Mater. Res. Appl. Biomater. 53, 421 (2000).3.0.CO;2-J>CrossRefGoogle ScholarPubMed
11.Kobayashi, M., Nakamura, T., Okada, Y., Fukumoto, A., Furukawa, T., Kato, H., Kokobu, T., Kikutani, T.: Bioactive bone cement: Comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and β-tricalcium phosphate fillers on bone bonding strength. J. Biomed. Mater. Res. 42, 223 (1998).3.0.CO;2-R>CrossRefGoogle ScholarPubMed
12.Shinzato, S., Kobayashi, M., Mousa, W.F., Kamimura, M., Neo, M., Kitamura, Y., Kokubo, T., Nakamura, T.: Bioactive polymethyl methacrylate-based bone cement: Comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. J. Biomed. Mater. Res. 51, 258 (2000).3.0.CO;2-S>CrossRefGoogle ScholarPubMed
13.Higashi, S., Yamamura, T., Nakamura, T., Ikada, Y., Hyon, S-H., Jamshidi, K.: Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials 7, 183 (1986).CrossRefGoogle ScholarPubMed
14.Verheyen, C.C.P.M., de Wijn, J.R., van Blitterswijk, C.A., de Groot, K.: Evaluation of hydroxylapatite/poly(L-lactide) composites: Mechanical behavior. J. Biomed. Mater. Res. 26, 1277 (1992).CrossRefGoogle ScholarPubMed
15.Kikuchi, M., Suetsugu, Y., Tanaka, J., Akao, M.: Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. J. Mater. Sci.: Mater. Med. 8, 361 (1997).Google ScholarPubMed
16.Ignjatovic, N., Tomic, S., Dakic, M., Miljkovic, M., Plavsic, M., Uskokovic, D.: Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 20, 809 (1999).CrossRefGoogle ScholarPubMed
17.Shikinami, Y., Okuno, M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials 20, 859 (1999).CrossRefGoogle Scholar
18.Durucan, C., Brown, P.W.: Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites. J. Biomed. Mater. Res. 51, 717 (2000).3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
19.Durucan, C., Brown, P.W.: Calcium-deficient hydroxyapatite-PLGA composites: Mechanical properties and microstructural characterization. J. Biomed. Mater. Res. 51, 726 (2000).3.0.CO;2-L>CrossRefGoogle Scholar
20.Bakar, M.S. Abu, Cheang, P., Khor, K.A.: Thermal processing of hydroxyapatite reinforced polyetheretherketone composites. J. Mater. Process. Technol. 89–90, 462 (1999).CrossRefGoogle Scholar
21.Bakar, M.S. Abu, Cheang, P., Khor, K.A.: Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Compos. Sci. Technol. 63, 421 (2003).CrossRefGoogle Scholar
22.Bakar, M.S. Abu, Cheang, P., Khor, K.A.: Tensile properties and microstructural analysis of spheroidized hydroxyapatitepoly (etheretherketone) biocomposites. Mater. Sci. Eng., A 345, 55 (2003).CrossRefGoogle Scholar
23.Bakar, M.S. Abu, Cheng, M.H.W., Tang, S.M., Yu, S.C., Liao, K., Tan, C.T., Khor, K.A., Cheang, P.: Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 24, 2245 (2003).CrossRefGoogle ScholarPubMed
24.Wang, M.: Developing bioactive composite materials for tissue replacement. Biomaterials 24, 2133 (2003).CrossRefGoogle ScholarPubMed
25.Tang, S.M., Cheang, P., Bakar, M.S. Abu, Khor, K.A., Liao, K.: Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites. Int. J. Fatigue 26, 49 (2004).CrossRefGoogle Scholar
26.Hench, L.L.: Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74, 1487 (1991).CrossRefGoogle Scholar
27.LeGeros, R.Z., LeGeros, J.P. Dense hydroxyapatite, in An Introduction to Bioceramics, edited by Hench, L.L. and Wilson, J. (World Scientific Publishing Co., NJ, 1993), pp. 139180.CrossRefGoogle Scholar
28.Hench, L.L.: Bioceramics. J. Am. Ceram. Soc. 81, 1705 (1998).CrossRefGoogle Scholar
29.Holmes, R., Mooney, V., Bucholz, R., Tencer, A.: A coralline hydroxyapatite bone graft substitute. Clin. Orthop. Relat. Res. 188, 252 (1984).CrossRefGoogle Scholar
30.Oguchi, H., Ishikawa, K., Mizoue, K., Seto, K., Eguchi, G.: Long-term histological evaluation of hydroxyapatite ceramics in humans. Biomaterials 16, 33 (1995).CrossRefGoogle ScholarPubMed
31.Dornhoffer, J.L.: Hearing results with the Dornhoffer ossicular replacement prostheses. Laryngoscope 108, 531 (1998).CrossRefGoogle ScholarPubMed
32.Hasegawa, K., Turner, C.H., Burr, D.B.: Contribution of collagen and mineral to the elastic anisotropy of bone. Calcif. Tissue Int. 55, 381 (1994).CrossRefGoogle Scholar
33.Takano, Y., Turner, C.H., Burr, D.B.: Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: Results from acoustic velocity measurements. J. Bone Miner. Res. 11, 1292 (1996).CrossRefGoogle ScholarPubMed
34.Weiner, S., Price, P.A.: Disaggregation of bone into crystals. Calcif. Tissue Int. 39, 365 (1986).CrossRefGoogle ScholarPubMed
35.Weiner, S., Traub, W.: Bone structure: From angstroms to microns. FASEB J. 6, 879 (1992).CrossRefGoogle ScholarPubMed
36.Bacon, G.E., Bacon, P.J., Griffiths, R.K.: Study of bones by neutron-diffraction. J. Appl. Crystallogr. 10, 124 (1977).CrossRefGoogle Scholar
37.Sasaki, N., Matsushima, N., Ikawa, N., Yamamura, H., Fukuda, A.: Orientation of bone mineral and its role in the anisotropic mechanical properties of bone–Transverse anisotropy. J. Biomech. 22, 157 (1989).CrossRefGoogle ScholarPubMed
38.Sasaki, N., Sudoh, Y.: X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif. Tissue Int. 60, 361 (1997).CrossRefGoogle ScholarPubMed
39.Wenk, H.R., Heidelbach, F.: Crystal alignment of carbonated apatite in bone and calcified tendon: Results from quantitative texture analysis. Bone 24, 361 (1999).CrossRefGoogle ScholarPubMed
40.Roeder, R.K., Sproul, M.M., Turner, C.H.: Hydroxyapatite whisker reinforcements used to produce anisotropic biomaterials. Trans. Orthop. Res. Soc. 26, 528 (2001).Google Scholar
41.Roeder, R.K., Sproul, M.M., Turner, C.H.: Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J. Biomed. Mater. Res. 67A, 801 (2003).CrossRefGoogle Scholar
42.Converse, G.L. and Roeder, R.K.: Tensile properties of hydroxyapatite whisker reinforced polyetheretherketone, in Mechanical Behavior of Biological and Biomimetic Materials edited by Bushby, A.J., Ferguson, V.L., Ko, C-C., and Oyen, M.L. (Mater. Res. Soc. Symp. Proc. 898E, Warrendale, PA, 2005), pp. L05–07.Google Scholar
43.Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92 (1998).CrossRefGoogle ScholarPubMed
44.Currey, J.D.: Strength of bone. Nature 195, 513 (1962).CrossRefGoogle Scholar
45.Currey, J.D.: The relationship between the stiffness and the mineral content of bone. J. Biomech. 2, 477 (1969).CrossRefGoogle ScholarPubMed
46.Voigt, W.: Lehrbuch der Kristallphysik. (B.G. Teubner Verlag, Leipzig, Germany, 1928).Google Scholar
47.Reuss, A.: Computation of the yield point of mixed crystals due to the plasticity condition for single crystals. Z. Angew. Math. Mech. 9, 49 (1929).CrossRefGoogle Scholar
48.Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127 (1963).CrossRefGoogle Scholar
49.Katz, J.L.: Hard tissue as a composite material—I. Bounds on the elastic behaviour. J. Biomech. 4, 455 (1971).CrossRefGoogle Scholar
50.Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A65, 351 (1952).Google Scholar
51.Piekarski, K.: Analysis of bone as a composite material. Int. J. Eng. Sci. 11, 557 (1973).CrossRefGoogle Scholar
52.Wagner, H.D., Weiner, S.: On the relationship between the microstructure of bone and its mechanical stiffness. J. Biomech. 25, 1311 (1992).CrossRefGoogle ScholarPubMed
53.Akiva, U., Wagner, H.D., Weiner, S.: Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J. Mater. Sci. 33, 1497 (1998).CrossRefGoogle Scholar
54.Weiner, S., Traub, W., Wagner, H.D.: Lamellar bone: Structure-function relations. J. Struct. Biol. 126, 241 (1999).CrossRefGoogle ScholarPubMed
55.Halpin, J.C.: Primer on Composite Materials Analysis (Technomic Publishing Co., Lancaster, PA, 1992).Google Scholar
56.Hill, R.: Theory of mechanical properties of fibre-strengthened materials: III. Self consistent model. J. Mech. Phys. Solids 13, 189 (1965).CrossRefGoogle Scholar
57.Bundy, K.J.: Experimental Studies of the Non-uniformity and Anisotropy of Human Compact Bone (Stanford University, Palo Alto, CA, 1974).Google Scholar
58.Bundy, K.J.: Determination of mineral-organic bonding effectiveness in bone—Theoretical considerations. Ann. Biomed. Eng. 13, 119 (1985).CrossRefGoogle ScholarPubMed
59.Sasaki, N., Ikawa, N., Fukuda, A.: Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J. Biomech. 24, 57 (1991).CrossRefGoogle ScholarPubMed
60.Bunge, H.J.: Effective elastic constants of cubic materials with arbitrary texture. Kristall Techn. 3, 431 (1968).CrossRefGoogle Scholar
61.Bunge, H.J., Kiewel, R., Reinert, Th., Fritsche, L.: Elastic properties of polycrystals—Influence of texture and stereology. J. Mech. Phys. Solids 48, 29 (2000).CrossRefGoogle Scholar
62.Halpin, J.C., Pagano, N.J.: The laminate approximation for randomly oriented fibrous composites. J. Comp. Mater. 3, 720 (1969).CrossRefGoogle Scholar
63.Camacho, C.W., III, C.L. Tucker, Yalvaç, S., McGee, R.L.: Stiffness and thermal expansion predictions for hybrid short fiber composites. Polym. Compos. 11, 229 (1990).CrossRefGoogle Scholar
64.Hine, P.J., Duckett, R.A., Ward, I.M.: Modelling the elastic properties of fibre-reinforced composites: II Theoretical predictions. Compos. Sci. Technol. 49, 13 (1993).CrossRefGoogle Scholar
65.Lusti, H.R., Hine, P.J., Gusev, A.A.: Direct numerical predictions for the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol. 62, 1927 (2002).CrossRefGoogle Scholar
66.Hine, P.J., Lusti, H.R., Gusev, A.A.: Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol. 62, 1445 (2002).CrossRefGoogle Scholar
67.Price, C.D., Hine, P.J., Whiteside, B., Cunha, A.M., Ward, I.M.: Modelling the elastic and thermoelastic properties of short fibre composites with anisotropic phases. Compos. Sci. Technol. 66, 69 (2006).CrossRefGoogle Scholar
68.Roeder, R.K., Converse, G.L., Leng, H., Yue, W.: Kinetic effects on hydroxyapatite whiskers synthesized by the chelate decomposition method. J. Am. Ceram. Soc. 89, 2096 (2006).CrossRefGoogle Scholar
69.Standard, ASTM D 638-01, Standard Test Method for Tensile Properties of Plastics (American Society for Testing and Materials, West Conshohocken, PA, 2001).Google Scholar
70.Park, J.B.: Biomaterials: An Introduction. (Plenum Press, New York, 1979).Google Scholar
71.Katz, J.L., Ukraincik, K.: On the anisotropic elastic properties of hydroxyapatite. J. Biomech. 4, 221 (1971).CrossRefGoogle ScholarPubMed