Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T10:27:38.788Z Has data issue: false hasContentIssue false

Microcompression study of Al-Nb nanoscale multilayers

Published online by Cambridge University Press:  20 January 2012

Youbin Kim
Affiliation:
Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Yuseong Gu, Daejeon 305-701, Republic Korea
Arief Suriadi Budiman
Affiliation:
Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545
J. Kevin Baldwin
Affiliation:
Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545
Nathan A. Mara
Affiliation:
Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545
Amit Misra
Affiliation:
Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545
Seung Min Han*
Affiliation:
Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Yuseong Gu, Daejeon 35-701, Republic Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Microcompression tests were performed on the Al/Nb multilayers of incoherent interfaces with the layer thicknesses of 5 nm Al/5 nm Nb and 50 nm Al/50 nm Nb. The Al-Nb multilayers showed increase in strength as the layer thickness was reduced; the average flow stresses at 5% plastic strain from the 5 nm Al/5 nm Nb and 50 nm Al/50 nm Nb layer thickness specimens were determined to be 2.1 GPa and 1.4 GPa respectively. The results from this Al-Nb microcompression study were compared with those of the previous report on Cu-Nb multilayer microcompression results that indicated that the flow stresses of the Al-Nb multilayer are lower than those of Cu-Nb with the same bilayer spacing. The observed difference in strength was attributed to a potential difference in the interfacial strength of the two incoherent multilayer systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Anderson, P.M. and Li, Z.: A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface. Mater. Sci. Eng. 319, 182 (2001).Google Scholar
2.Mastorakos, I.N., Zbib, H.M., and Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94, 173114 (2009).Google Scholar
3.Wang, Y.C., Misra, A., and Hoagland, R.G.: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54, 1593 (2006).CrossRefGoogle Scholar
4.Mara, N.A., Bhattacharyya, D., Hirth, J.P., Dickerson, P., and Misra, A.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97, 021909 (2010).CrossRefGoogle Scholar
5.Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).CrossRefGoogle Scholar
6.Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D.: Structure and mechanical properties of Cu-X (X 5 Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).CrossRefGoogle Scholar
7.Misra, A., Hoagland, R.G., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb film. Philos. Mag. 84, 1021 (2004).Google Scholar
8.Huang, H. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).CrossRefGoogle Scholar
9.Misra, A., Hirth, J.P., Hoagland, R.G., Embury, J.D., and Kung, H.: Dislocation mechanisms and symmetric slip in rolled nanoscale metallic multilayers. Acta Mater. 52, 2387 (2004).Google Scholar
10.Wang, J., Misra, A.: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).CrossRefGoogle Scholar
11.Anderson, P.M., Bingert, J.F., Misra, A., and Hirth, J.P.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 51, 6059 (2003).CrossRefGoogle Scholar
12.Han, S.M., Phillips, M.A., and Nix, W.D.: Study of strain softening behavior of Al–Al3Sc multilayers using microcompression testing. Acta Mater. 57, 4473 (2009).Google Scholar
13.Phillips, M.A., Clemens, B.M., and Nix, W.D.: A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers. Acta Mater. 51, 3157 (2003).CrossRefGoogle Scholar
14.Phillips, M.A., Clemens, B.M., and Nix, W.D.: Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 51, 3171 (2003).CrossRefGoogle Scholar
15.Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
16.Budiman, A.S., Li, N., Wei, Q., Baldwin, J.K., Xiong, J., Luo, H., Trugman, D., Jia, Q.X., Tamura, N., Kunz, M., Chen, K., and Misra, A.: Growth and structural characterization of epitaxial Cu/Nb multilayers. Thin Solid Films 519, 4137 (2011).CrossRefGoogle Scholar
17.Anderson, P.M. and Li, C.: Hall-Petch relations for multilayered materials. Nanostruct. Mater. 5, 349 (1995).CrossRefGoogle Scholar
18.Friedman, L.H. and Chrzan, D.C.: Scaling theory of the Hall-Petch relation for multilayers. Phys. Rev. Lett. 81, 27151998 (1998).CrossRefGoogle Scholar
19.Pande, C.S., Masumura, R.A., and Armstrong, R.W.: Pile-up based Hall-Petch relation for nanoscale materials. Nanostruct. Mater. 2, 323 (1993).Google Scholar
20.Liu, H.W. and Gao, Q.: The equivalence between dislocation pile-ups and cracks. Theor. Appl. Fract. Mech. 12, 195 (1990).CrossRefGoogle Scholar
21.Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. 82, 643 (2002).Google Scholar
22.Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 56, 5685 (2008).CrossRefGoogle Scholar
23.Nix, W.D.: Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39, 545 (1998).CrossRefGoogle Scholar
24.Hoagland, R.G., Kurtz, R.J., and Henager, C.H. Jr: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).CrossRefGoogle Scholar
25.Hoagland, R.G., Hirth, J.P., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86, 3537 (2006).CrossRefGoogle Scholar
26.Han, S.M., Saha, R., Nix, W.D.: Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Mater. 54, 1571 (2006).CrossRefGoogle Scholar
27.Han, S.M., Saha, R., Banerjee, R., Viswanathan, G.B., Clemens, B.M., and Nix, W.D.: Combinatorial studies of mechanical properties of Ti–Al thin films using nanoindentation. Acta Mater. 53, 2059 (2005).Google Scholar
28.Saha, R. and Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).Google Scholar
29.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A low for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
30.Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W.: Mechanism-based strain gradient plasticity-I. Theory. J. Mech. Phys. Solids 47, 1239 (1999).Google Scholar
31.Huanga, Y., Gao, H., Nix, W.D., and Hutchinson, J.W.: Mechanism-based strain gradient plasticity-II. Analysis. J. Mech. Phys. Solids 48, 99 (2000).CrossRefGoogle Scholar
32.Huang, Y., Xue, Z., Gao, H., Nix, W.D., and Xia, Z.C.: A study of microindentation hardness tests by mechanism-based strain gradient plasticity, J. Mater. Res. 15, 1786 (2000).Google Scholar
33.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).CrossRefGoogle ScholarPubMed
34.Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 56, 3109 (2008).CrossRefGoogle Scholar
35.Han, S.M., Bozorg-Grayeli, T., Groves, J.R., and Nix, W.D.: Size effects on strength and plasticity of vanadium nanopillars. Scr. Mater. 63, 1153 (2010).CrossRefGoogle Scholar
36.Han, S.M., Xie, C., and Cui, Y.: Microcompression of fused silica nanopillars synthesized using reactive ion etching. Nanosci. Nanotechnol. Lett. 2, 1 (2011).Google Scholar
37.Fu, E.G., Li, N., Misra, A., Hoagland, R.G., Wang, H., and Zhang, X.: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater. Sci. Eng. A 493, 283 (2008).CrossRefGoogle Scholar
38.Tabor, D.: The Hardness of Metal (Clarendon Press, Oxford, United Kingdom, 1987) p. 52.Google Scholar
39.Yu-Zhang, K., Embury, J.D., Han, K., and Misra, A.: Transmission electron microscopy investigation of the atomic structure of interfaces in nanoscale Cu–Nb multilayers. Philos. Mag. 88, 2559 (2008).Google Scholar
40.Li, N., Wang, J., Huang, J.Y., Misra, A., and Zhang, X.: In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scr. Mater. 63, 363 (2010).CrossRefGoogle Scholar