Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T07:52:52.196Z Has data issue: false hasContentIssue false

Metastable phases formed in Fe–Cu–Si multilayered films by ion irradiation

Published online by Cambridge University Press:  29 June 2016

B. X. Liu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
C. H. Shang
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
C. H. Liu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Get access

Abstract

Iron-rich Fe–Cu–Si multilayers were made by alternately depositing pure elements in a high vacuum system. The as-deposited films were then subjected to 200 keV xenon ion irradiation to doses ranging from 2 × 1015 to 1.2 × 1016 Xe/cm2 at liquid nitrogen and room temperature. Transmission or scanning electron microscope and in situ energy dispersive spectroscopy were used to characterize the films. It was found that ion irradiation induced the formation of a new metastable phase in many irradiated films. The new phase was identified to be of fee structure with a lattice constant a = 0.423 nm. Strikingly, another phase reflecting sharp diffraction spots with 12-fold symmetry was also observed in a room temperature irradiated sample at a dose of 9 × 1015 Xe/cm2. The distribution of the diffraction spots was shown to be incommensurate and bore a close relationship with the metastable fee phase. Furthermore, scanning electron microscope examination revealed that many clusters with 5-fold symmetry emerged in the corresponding film. The sharp incommensurate diffraction patterns may be ascribed to some incommensurate or quasicrystalline order appearing in the ion-induced structures.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsaur, B. Y., Lau, S. S., and Mayer, J. W., Appl. Phys. Lett. 36, 823 (1980).CrossRefGoogle Scholar
2.Mayer, J. W., Tsaur, B. Y., Lau, S. S., and Hung, L. S., Nucl. Instrum. Methods 182/183, 1 (1981).Google Scholar
3.Liu, B. X., Johnson, W. L., Nicolet, M-A., and Lau, S. S., Appl. Phys. Lett. 42, 45 (1983).CrossRefGoogle Scholar
4.Matteson, S. and Nicolet, M-A., Annu. Rev. Mater. Sci. 13, 339 (1983).CrossRefGoogle Scholar
5.van Rossum, M., Cheng, Y-T., Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett. 46, 610 (1985).CrossRefGoogle Scholar
6.Liu, B. X., Phys. Status Solidi (a) 94, 11 (1986).Google Scholar
7.Liu, B. X., Ma, E., Li, J., and Huang, L. J., Nucl. Instrum. Methods in Phys. Res. B 19/20, 682 (1987).CrossRefGoogle Scholar
8.Peiner, E. and Kopitzki, K., Nucl. Instrum. Methods in Phys. Res. B 34, 173 (1988).Google Scholar
9.Wang, Z. L., Westendorp, J. F. M., Doom, S., and Saris, F., in Metastable Materials Formation by Ion Implantation, edited by Picraux, S. T. and Choyke, W. J. (Mater. Res. Soc. Symp. Proc. 7, North-Holland Publication Co., Amsterdam, The Netherlands, 1982), p. 59.Google Scholar
10.Cheng, Y-T., Ph. D. Thesis, California Institute of Technology (1987).Google Scholar
11.Tao, K., Hewett, C. A., Lau, S. S., Buchal, Ch., and Poker, D. B., Nucl. Instrum. Methods in Phys. Res. B 19/20, 753 (1987).Google Scholar
12.Hung, L. S., Colgan, E. G., and Mayer, J. W., Nucl. Instrum. Methods in Phys. Res. B 19/20, 654 (1987).CrossRefGoogle Scholar
13.Liu, B. X., Mater. Lett. 5, 322 (1987).Google Scholar
14.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).Google Scholar
15.Alonso, J. A. and Lopez, J. M., Mater. Lett. 4, 316 (1986).Google Scholar
16.Liu, B. X., Huang, L. J., Tao, K., Shang, C. H., and Li, H-D., Phys. Rev. Lett. 59, 745 (1987).Google Scholar
17.Shechtman, D. S., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 54, 1951 (1984).CrossRefGoogle Scholar
18.Lilienfeld, D. A., Nastasi, M., Johnson, H. H., and Mayer, J. W., Phys. Rev. Lett. 55, 1578 (1985).Google Scholar
19.Follstaedt, D. M. and Knapp, J. A., Phys. Rev. Lett. 56, 1827 (1986).Google Scholar
20.Chien, C. L., Phys. Rev. B 33, 3247 (1986).CrossRefGoogle Scholar
21.Huang, L. J., Chen, Q. M., Fan, Y. D., Li, H-D., and Liu, B. X., J. Phys. F. 18, L69 (1988).Google Scholar
22.Kosdenmaki, D. C., Chen, H. S., and Rao, K. V., Phys. Rev. B 33, 5328 (1986), and references therein.CrossRefGoogle Scholar
23.Liu, B. X., Johnson, W. L., Nicolet, M-A., and Lau, S. S., Nucl. Instrum. Methods 209/210, 229 (1983).CrossRefGoogle Scholar
24.Chen, H., Phys. Rev. Lett. 60, 1645 (1988).CrossRefGoogle Scholar