Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:33:54.378Z Has data issue: false hasContentIssue false

Metal-organic vapor phase epitaxial growth of high-quality ZnO films on Al2O3(00·1)

Published online by Cambridge University Press:  31 January 2011

W. I. Park
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Korea
S-J. An
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Korea
Gyu-Chul Yi*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Korea
Hyun M. Jang
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Korea
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

High-quality ZnO thin films were grown epitaxially at 250–550 °C Al2O3(00·1) substrates using low-pressure metalorganic vapor phase epitaxy. The reactants for the growth were diethylzinc and oxygen. Growth temperature, one of the important experimental parameters for epitaxial layers, was optimized. The films grown at 500 °C exhibited good crystallinity and strong ultraviolet absorption and emission. Photoluminescence spectra of the films showed a dominant excitonic emission with a weak deep level emission. More importantly, a strong stimulated emission peak was observed even at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Service, R.F., Science 276, 895 (1997).CrossRefGoogle Scholar
2.Liang, W.Y. and Yoffe, A.D., Phys. Rev. Lett. 20, 59 (1968).CrossRefGoogle Scholar
3.Zu, P., Tang, Z.K., Wong, G.K.L., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Solid State Commun. 103, 459 (1997).CrossRefGoogle Scholar
4.Fukumura, T., Jin, Z., Ohtomo, A., Koinuma, H., and Kawasaki, M., Appl. Phys. Lett. 75, 3366 (1999).CrossRefGoogle Scholar
5.Park, W.I. and Yi, G-C. (unpublished).Google Scholar
6.Vispute, R.D., Talyansky, V., Choopun, S., Sharma, R.P., Venkatesan, T., He, M., Tang, X., Halpern, J.B., Spencer, M.G., Li, Y.X., Salamanca-Riba, L.G., Iliadis, A.A., and Jones, K.A.. Appl. Phys. Lett. 73, 348 (1998).CrossRefGoogle Scholar
7.Bagnall, D.M., Chen, Y.F., Zhu, Z., Yao, T., Shen, M.Y., and Goto, T., Appl. Phys. Lett. 73, 1038 (1998).Google Scholar
8.Souletie, P. and Wessels, B.W., J. Mater. Res. 3, 740 (1988).CrossRefGoogle Scholar
9.Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).CrossRefGoogle Scholar
10.Ghandhi, S.K., Field, R.J., and Shealy, J.R., Appl. Phys. Lett. 37, 449 (1980).CrossRefGoogle Scholar
11.Gorla, C.R., Emanetoglu, N.W., Liang, S., Mayo, W.E., Lu, Y., Wraback, M., and Shen, H., J. Appl. Phys. 85, 2595 (1999);Google Scholar
Emanetoglu, N.W., Gorla, C., Liu, Y., Liang, S., and Lu, Y., Mater. Sci. Semicon. Process. 2, 247 (1999).Google Scholar
12.Kumar, N.D., Kamalasanan, M.N., and Chandra, S., Appl. Phys. Lett. 65, 1373 (1994).Google Scholar
13.Look, D.C., Reynolds, D.C., Sizelove, J.R., Jones, R.L., Litton, C.W., Cantwell, G., and Harsch, W.C., Solid State Commun. 105, 399 (1998).CrossRefGoogle Scholar
14.Johnson, M.A.L., Fujita, S., Rowland, W.H. Jr., Huges, W.C., Cook, J.W. Jr, and Schetzina, J.F., J. Electron. Mater. 25, 855 (1996).CrossRefGoogle Scholar
15.Bagnall, D.M., Chen, Y.F., Shen, M.Y., Zhu, Z., Goto, T., and Yao, T., J. Cryst. Growth. 184/185, 605 (1998);Google Scholar
Chen, Y., Bagnall, D., and Yao, T., Mater. Sci. Eng. B 75, 190 (2000).CrossRefGoogle Scholar
16.Klingshirn, C., Phys. Status Solidi B 71, 547 (1975).Google Scholar