Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T09:52:26.745Z Has data issue: false hasContentIssue false

Metalorganic chemical vapor deposition of highly oriented thin film composites of V2O5 and V6O13: Suppression of the metal–semiconductor transition in V6O13

Published online by Cambridge University Press:  01 October 2004

M.B. Sahana
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012, India
S.A. Shivashankar*
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Thin films of vanadium oxides were grown on fused quartz by metalorganic chemical vapor deposition using vanadyl acetylacetonate as the precursor. Growth at temperatures ⩾560 °C results in composites of strongly (00l)-oriented V2O5 and V6O13. The dominant phase of the film changes from V2O5 to V6O13, and back to V2O5, as the growth temperature is raised from 560 to 570 °C, then to 580 °C, as evidenced by x-ray diffraction and Rutherford backscattering analyses. This reentrant-type growth trend was interpreted on the basis of the small difference in the free energy of formation of V2O5 and V6O13 and the presence of metal–oxygen bonds in the precursor. In contrast with single-crystalline V6O13, the film predominantly composed of highly oriented single-crystalline platelets of V6O13 did not undergo the semiconductor–metal transition at −123° K, despite the connectivity being well above the percolation threshold. Instead, a semiconductor-to-semiconductor transition was observed in this film, which is explained in terms of the observed relaxation of the edges of all the platelets of metallic V6O13 to semiconducting V2O5.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hevesi, I., Kiss, L.B., Torok, M.I. and Nanai, L.: Electron concentration in vanadium(V) oxide single crystals as determined by 1/f noise measurements. Phys. Status Solidi, Appl. Res. A 81, K67 (1984).CrossRefGoogle Scholar
2Kawashima, K., Ueda, Y., Kosuge, K. and Kachi, S.: Crystal growth and some electric properties of V6O13. J. Cryst. Growth 26, 321 (1974).CrossRefGoogle Scholar
3Kachi, S., Takada, T. and Kosuge, K.: Electrical conductivity of vanadium oxides. J. Phys. Soc. Jpn. 18, 1839 (1963).CrossRefGoogle Scholar
4Kawada, I., Nakano, M., Saeki, M., Ishii, M., Kimizuka, N. and Nakahira, M.: Phase transition of vanadium oxide (V6O13). J. Less-Common Met. 32, 171 (1973).CrossRefGoogle Scholar
5Gossard, A.C., Di Salvo, F.J., Erich, L.C., Remeika, J.P., Yasuoka, H., Kosuge, K. and Kachi, S.: Microscopic magnetic properties of vanadium oxides: II. V3O5, V5O9, V6O11, and V6O13. Phys. Rev. B 10, 4178 (1974).CrossRefGoogle Scholar
6Haber, J., Witko, M. and Tokarz, R.: Vanadium pentoxide I. Structures and properties. Appl. Catal. A: General 157, 3 (1997).CrossRefGoogle Scholar
7Enjalbert, R. and Galy, J.: A refinement of the structure of vanadium pentoxide. Acta Crystallogr. C 42, 1467 (1986).CrossRefGoogle Scholar
8De Gryse, R., Landuyt, J.P., Vermeire, A. and Vennik, J.: A combined LEIS (low energy ion scattering)-LEED study of the V6O13(001) surface. Appl. Surf. Sci. 6, 430 (1980).CrossRefGoogle Scholar
9Parvulescu, V.I., Boghosian, S., Parvulescu, V., Jung, S.M. and Grange, P.: Selective catalytic reduction of NO with NH3 over mesoporous V2O5-TiO2-SiO2 catalysts. J. Catal. 217, 172 (2003).Google Scholar
10Huang, Z., Zhu, Z., Liu, Z. and Liu, Q.: Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures. J. Catal. 214, 213 (2003).CrossRefGoogle Scholar
11Zhuiykov, S., Wlodarski, W. and Li, Y.: Nanocrystalline V2O5-TiO2 thin-films for oxygen sensing prepared by sol-gel process. Sens. Actuators B 77, 484 (2001).CrossRefGoogle Scholar
12Passerini, S., Tipton, A.L. and Smyrl, W.H.: Spin coated V2O5 XRG as optically passive electrode in laminated electrochromic devices. Sol. Energy Mater. Sol. Cells 39, 167 (1995).CrossRefGoogle Scholar
13McGraw, J.M., Bahn, C.S., Parilla, P.A., Perkins, J.D., Readey, D.W. and Ginley, D.S.: Li ion diffusion measurements in V2O5 and Li(Co1- x Alx )O2 thin-film battery cathodes. Electrochim. Acta. 45, 187 (1999).CrossRefGoogle Scholar
14Garcia, M.E., III, E. Webb and Garofalini, S.H.: Molecular dynamics simulation of V2O5/Li2Si03 Interface. J. Electrochem. Soc. 145, 2155 (1998).CrossRefGoogle Scholar
15Fang, G.J., Liu, Z.L., Wang, Y.Q., Liu, H.H. and Yao, K.L.: Oriented growth of V2O5 electrochemic thin films on transparent conductive glass by pulsed excimer laser ablation technique. J. Phys. D: Appl. Phys. 33, 3018 (2000).CrossRefGoogle Scholar
16McGraw, J.M., Perkins, J.D., Hasoon, F., Parilla, P.A., Warmsingh, C. and Ginley, D.S.: Pulsed laser deposition of oriented V2O5 thin films. J. Mater. Res. 15, 2249 (2000).CrossRefGoogle Scholar
17Barreca, D., Armelao, L., Caccavale, F., Noto, V.D., Gregori, A., Rizzi, G.A. and Tondello, E.: Highly oriented V2O5 nanocrystalline thin films by plasma-enhanced chemical vapour deposition. Chem. Mater. 12, 98 (2000).CrossRefGoogle Scholar
18Manning, T.D., Parkin, I.P., Clark, R.J.H., Sheel, D., Pemble, M.E. and Vernadou, D.: Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides. J. Mater. Chem. 12, 2936 (2002).CrossRefGoogle Scholar
19Soud, A.M. Abo El, Mansour, B. and Soliman, L.I.: Optical and electrical properties of V2O5 thin films. Thin Solid Films 247, 140 (1994).CrossRefGoogle Scholar
20Kobayashi, S., Takemura, T. and Kaneko, F.: Dependence of absorption in electrochromic V2O5 thin films on crystallinity. Jpn. J. Appl. Phys. 26 L1274 (1987).CrossRefGoogle Scholar
21Munshi, M.Z.A., Smyrl, W.H. and Schmidtke, C.: Insertion reaction of V6O13 electrodes reversibly incorporating divalent cations. Solid State Ionics 47, 265 (1991).CrossRefGoogle Scholar
22Braithwaite, J.S., Catlow, C.R.A., Harding, J.H. and Gale, J.D.: A theoretical study of lithium intercalation into V6O13-a combined classical, quantum mechanical approach. Phys. Chem. Chem. Phys. 3, 4052 (2001).CrossRefGoogle Scholar
23Gorenstein, A., Khelfa, A., Guesdon, J.P., Nazri, G.A., Hussain, O.M., Ivanov, I. and Julien, C.: The growth and electrochemical properties of V6O13 flash-evaporateed films. Solid State Ionics 76, 133 (1995).CrossRefGoogle Scholar
24Wang, X.J., Li, H.D., Fei, Y.J., Wang, X., Xiong, Y.Y., Nie, Y.X. and Feng, K.A.: XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering. Appl. Surf. Sci. 177, 8 (2001).CrossRefGoogle Scholar
25Sahana, M.B., Dharmaprakash, M.S. and Shivashankar, S.A.: Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate. J. Mater. Chem. 12, 333 (2002).CrossRefGoogle Scholar
26Sahana, M.B., Subbanna, G.N. and Shivashankar, S.A.: Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition. J. Appl. Phys. 92, 6495 (2002).CrossRefGoogle Scholar
27Sahana, M.B. and Shivashankar, S.A.: Growth of nanowires of β-NaxV2O5 by metalorganic chemical vapor deposition. J. Mater. Chem. 13, 2254 (2003).CrossRefGoogle Scholar
28Joint Committee on Powder Diffraction Standards (JCPDS) Powder Diffraction File (PDF) database, published annually by the International Centre for Diffraction Data, USA.Google Scholar
29Kenay, N., Kannewurf, O.R. and Whitmore, D.H.: Optical absorption coefficients of vanadium pentoxide single crystals. J. Phys. Chem. Solids 27, 1237 (1966).CrossRefGoogle Scholar
30Yoon, J-G., Oh, H.K. and Lee, S.J.: Growth characteristics and surface roughening of vapor-deposited MgO thin films. Phys. Rev. B 60, 2839 (1999).CrossRefGoogle Scholar
31Thompson, C.V. and Smith, H.I.: Surface-energy-driven secondary grain growth in ultrathin (<100 nm) films of silicon. Appl. Phys. Lett. 44, 603 (1984).CrossRefGoogle Scholar
32Smith, H.I. and Flanders, D.C.: Oriented crystal growth on amorphous substrates using artificial surface-relief gratings. Appl. Phys. Lett. 32, 349 (1978).CrossRefGoogle Scholar
33Mane, A.U. and Shivashankar, S.A.: MOCVD of cobalt oxide thin films: Dependence of growth, microstructure, and optical properties on the source of oxidation. J. Cryst. Growth 254, 368 (2003).CrossRefGoogle Scholar
34Shalini, K. Development and Application of Metalorganic Complexes as Precursors for the Chemical Vapor Deposition of Oxide Thin Films. Ph.D. Thesis, Indian Institute of Science, Bangalore, India, 2002Google Scholar
35Deines, P., Nafziger, R.H., Ulmer, G.C. and Woerman, E. Temperature-oxygen fugacity tables for gas mixtures in system C-H-O at one atmosphere total pressure. Bulletin of Earth and Minerals Experimental Section, No. 88 (The Pennsylvania State University, University Park, PA, 1974).Google Scholar