Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T08:07:42.599Z Has data issue: false hasContentIssue false

Metallization schemes for dielectric thin film capacitors

Published online by Cambridge University Press:  31 January 2011

H. N. Al-Shareef
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
D. Dimos
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
B. A. Tuttle
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
M. V. Raymond
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

A detailed analysis of Pt/Ti, Pt/TiO2, and Pt/ZrO2 electrodes was carried out to develop a bottom electrode stack for sol-gel derived thin film capacitors. For the Pt/Ti stack, the choice of layer thickness and deposition temperature is found to affect adhesion to the SiO2/Si substrate as well as the extent of hillock formation and Pt–Ti interaction. By using elevated temperature deposition, Pt films close to 1 μm in thickness can be produced with relatively good adhesion and morphological stability using Ti adhesion layers. In addition, Pt films grown on ZrO2 and TiO2 adhesion layers exhibit little morphological change and no degradation in sheet resistance after annealing at 650 °C. However, neither ZrO2 nor TiO2 are as effective as Ti metal in promoting Pt adhesion. Experiments aimed at establishing a correlation between hillock formation and capacitor yield revealed two important results. First, the behavior of Pt/Ti stacks during annealing in air is markedly different from their behavior during PZT film crystallization. Second, preannealing of the Pt/Ti in air prior to PZT film growth actually improves capacitor yield, even though hillock formation occurs during the preannealing treatment. Implications of these results regarding the role of hillocks in controlling capacitor yield are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hren, P. D., Rou, S. H., Al-Shareef, H. N., Ameen, M. S., Auciello, O., and Kingon, A. I., Integrated Ferroelectrics 2, 311 (1992).CrossRefGoogle Scholar
2.Bruchhaus, R., Pitzer, D., Eibl, O., Scheithauer, U., and Hoesler, W., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 123.Google Scholar
3.Al-Shareef, H. N., Gifford, K. D., Hren, P. D., Rou, S. H., Auciello, O., and Kingon, A. I., Integrated Ferroelectrics 3, 259 (1993).CrossRefGoogle Scholar
4.Olowolafe, J., Jones, R. E., Jr., Campbell, A., Mogab, C. J., and Gregory, R. B., J. Appl. Phys. 73, 1764 (1993).CrossRefGoogle Scholar
5.Eichorst, D. J., Blanton, T. N., Barnes, C. L., and Bosworth, L. A., Integrated Ferroelectrics 4, 239 (1994).CrossRefGoogle Scholar
6.VLSI Technology, edited by Sze, S. M. (McGraw Hill, New York, 1988).Google Scholar
7.Schwartz, R. W., Assink, R. A., and Headley, T. J., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 245.Google Scholar
8.Sreenivas, K., Reaney, I., Maeder, T., Setter, N., Jagadish, C., and Elliman, R. G., J. Appl. Phys. 75, 232 (1994).CrossRefGoogle Scholar
9.Park, K. H., Kim, C. Y., Jeong, Y. W., Kwon, H. J., Kim, K. Y., Lee, J. S., and Kim, S. T., J. Mater. Res. 10, 1790 (1995).CrossRefGoogle Scholar
10.Summerfelt, S. R., Kotecki, D., Kingon, A. I., and Al-Shareef, H. N., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 257.Google Scholar
11.d'Heurle, F. M., Int. Mater. Rev. 34, 53 (1989).CrossRefGoogle Scholar