Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T06:00:57.851Z Has data issue: false hasContentIssue false

Mesoporous titanium dioxide nanobelts: Synthesis, morphology evolution, and photocatalytic properties

Published online by Cambridge University Press:  30 May 2012

Chaohong Liu
Affiliation:
College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
Xin Wang*
Affiliation:
Institute of Material Science and Engineering, Ocean University of China, Qingdao 266100, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Mesoporous titanium dioxide (TiO2) and lithium (Li)-doped TiO2 nanobelts were synthesized via a facile solvothermal process. The crystalline structure and morphology of the nanobelts were characterized in detail. The x-ray diffraction patterns, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images indicate that the nanobelts have uniform monoclinic geometry with a length of 3–4 μm and a width of 40–200 nm, the pores are also uniform with 5–7 nm in diameter. scanning electron microscopy and TEM studies demonstrate the as-prepared TiO2 nanobelts have varied morphologies that strongly depend on the volume ratio of the reaction medium and the pressure. Ultraviolet-visible diffuse reflectance spectroscopy was used to study the photocatalytic degradation of Malachite green over the lithium nanoparticle-loaded mesoporous TiO2 nanobelts. The doping of lithium does not change the crystalline phase but the results form infrared spectrums confirm that the Li+ ion incorporates into the lattice of TiO2 nanobelts, decomposes it by replacing Ti4+ and thus reduces the photocatalytic activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, C. and Yang, S.: Synthesis of angstrom-scale anatase titania atomic wires. ACS Nano 3, 1025 (2009).Google Scholar
2.Feng, X., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., and Grimes, C.A.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).CrossRefGoogle ScholarPubMed
3.Wen, B., Liu, C., and Liu, Y.: Depositional characteristics of metal coating on single-crystal TiO2 nanowires. J. Phys. Chem. B 109, 12372 (2005).CrossRefGoogle ScholarPubMed
4.Xiao, Q., Ouyang, L., Gao, L., and Yao, C.: Preparation and visible light photocatalytic activity of mesoporous N, S-codoped TiO2(B) nanobelts. Appl. Surf. Sci. 257, 3652 (2011).CrossRefGoogle Scholar
5.Wang, W. and Ao, L.: A soft chemical synthesis of TiO2 nanobelts. Mater. Lett. 64, 912 (2010).CrossRefGoogle Scholar
6.Ji, T., Liu, Y., Zhao, H., Du, H., Sun, J., and Ge, G.: Preparation and up-conversion fluorescence of rare earth (Er3+ or Yb3+/Er3+)-doped TiO2 nanobelts. J. Solid State Chem. 183, 584 (2010).CrossRefGoogle Scholar
7.Wang, D., Zhou, F., Wang, C., and Liu, W.: Synthesis and characterization of silver nanoparticle loaded mesoporous TiO2 nanobelts. Microporous Mesoporous Mater. 116, 658 (2008).CrossRefGoogle Scholar
8.Chong, S., Xia, J., Suresh, N., Yamaki, K., and Kadowaki, K.: Tailoring the magnetization behavior of Co-doped titanium dioxide nanobelts. Solid State Commun. 148, 345 (2008).CrossRefGoogle Scholar
9.Zhu, K., Neale, N.R., Miedaner, A., and Frank, A.J.: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using vertically oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007).CrossRefGoogle Scholar
10.Adachi, M., Murata, Y., Takao, J., Jiu, J., Sakamoto, M., and Wang, F.: Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943 (2004).CrossRefGoogle ScholarPubMed
11.Baxter, J.B. and Aydil, E.S.: Epitaxial growth of ZnO nanowires on a- and c-plane sapphire. J. Crystal Growth 274, 407 (2005).CrossRefGoogle Scholar
12.Wu, N., Zhao, M., Zheng, J.G., Jiang, C., Myers, B., Li, S., Chyu, M., and Mao, S.X.: Porous CuO–ZnO nanocomposite for sensing electrode of high-temperature CO solid-state electrochemical sensor. Nanotechnology 16, 2878 (2005).Google Scholar
13.Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C., and Grimes, C.A.: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).CrossRefGoogle Scholar
14.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).Google Scholar
15.Leschkies, K.S., Divakar, R., Basu, J., Enache-Pommer, E., Boercker, J.E., Carter, C.B., Kortshagen, U.R., Norris, D.J., and Aydil, E.S.: Photosensitization of ZnO nanowires with Cd Se quantum dots for photovoltaic devices. Nano Lett. 7, 1793 (2007).Google Scholar
16.Brezová, V., Blažková, A., Karpinský, Ľ., Grošková, J., Havlinova, B., Jorik, V., and Čeppan, M.: Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres. J. Photochem. Photobiol., A 109, 177 (1997).Google Scholar
17.López, T., Hernandez-Ventura, J., Gómez, R., Tzompantzi, F., Sánchez, E., Bokhimi, X., and Garcıa, A.: Photodecomposition of 2, 4-dinitroaniline on Li/TiO2 and Rb/TiO2 nanocrystallite sol–gel derived catalysts. J. Mol. Catal. A: Chem. 167, 101 (2001).CrossRefGoogle Scholar
18.Bessekhouad, Y., Robert, D., Weber, J., and Chaoui, N.: Effect of alkaline-doped TiO2 on photocatalytic efficiency. J. Photochem. Photobiol., A 167, 49 (2004).CrossRefGoogle Scholar