Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T19:46:25.425Z Has data issue: false hasContentIssue false

Mechanisms for the enhancement of the thermal stability of organic thin films by aluminum oxide capping layers

Published online by Cambridge University Press:  01 February 2006

S. Sellner
Affiliation:
Max-Planck-Institut für Metallforschung, 70569 Stuttgart, Germany; and Institut für Theoretische und Angewandte Physik, Universität Stuttgart, 70550 Stuttgart, Germany
A. Gerlach
Affiliation:
Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford OX1 3QZ, United Kingdom
F. Schreiber
Affiliation:
Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford OX1 3QZ, United Kingdom
M. Kelsch
Affiliation:
Max-Planck-Institut für Metallforschung, 70569 Stuttgart, Germany
N. Kasper
Affiliation:
Max-Planck-Institut für Metallforschung, 70569 Stuttgart, Germany; and ANKA, FZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany
H. Dosch
Affiliation:
Max-Planck-Institut für Metallforschung, 70569 Stuttgart, Germany; and Institut für Theoretische und Angewandte Physik, Universität Stuttgart, 70550 Stuttgart, Germany
S. Meyer
Affiliation:
III. Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany
J. Pflaum
Affiliation:
III. Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany
M. Fischer
Affiliation:
I. Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany
B. Gompf
Affiliation:
I. Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany
G. Ulbricht
Affiliation:
Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany
Get access

Abstract

We present a detailed study of the thermal stability of organic thin films of diindenoperylene encapsulated by sputtered aluminum oxide layers. We studied the influence of capping layer thickness, stoichiometry, and heating rate on the thermal stability of capped films and their eventual breakdown. Under optimized encapsulation conditions (thick and stoichiometric capping layer), the organic films desorb only at temperatures 200 °C above the desorption of the uncapped film. Moreover, the capped organic films retain their crystalline order at these elevated temperatures, whereas they would normally (i.e., uncapped) be in the gas phase. This study therefore also shows a way of studying organic materials under temperature conditions normally inaccessible. Considering results from complementary techniques, we discuss possible scenarios for the eventual breakdown. The results have implications for the performance and long-term stability of organic devices for which stability against elevated temperatures as well as against exposure to ambient gases is crucial.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Physics of Organic Semiconductors, edited by Brütting, W. (Wiley-VCH, Weinheim, Germany, 2005).CrossRefGoogle Scholar
2.Horowitz, G.: Organic thin film transistors: From theory to real devices. J. Mater. Res. 19, 1946 (2004).CrossRefGoogle Scholar
3.Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).CrossRefGoogle ScholarPubMed
4.Dimitrakopoulos, C.D. and Malenfant, P.R.L.: Organic thin film transistors for large area electronics. Adv. Mater. 14, 99 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
5.Dodabalapur, A., Laquindanum, J., Katz, H.E. and Bao, Z.: Complementary circuits with organic transistors. Appl. Phys. Lett. 69, 4227 (1996).CrossRefGoogle Scholar
6.Scheinert, S. and Schliefke, W.: Analyzes of field-effect devices based on poly(3-octylthiophene). Synth. Met. 139, 501 (2003).CrossRefGoogle Scholar
7.Ye, R., Baba, M., Suzuki, K., Ohishi, Y. and Mori, K.: Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors. Thin Solid Films 464–465, 437 (2004).CrossRefGoogle Scholar
8.Pannemann, Ch., Diekmann, T. and Hilleringmann, U.: Degradation of organic field-effect transistors made of pentacene. J. Mater. Res. 19, 1999 (2004).CrossRefGoogle Scholar
9.Sheats, J.R., Antoniadis, H., Hueschen, M., Leonard, W., Miller, J., Moon, R., Roitman, D. and Stocking, A.: Organic electroluminescent devices. Science 273, 884 (1996).CrossRefGoogle ScholarPubMed
10.Zhou, X., He, J., Liao, L.S., Lu, M., Ding, X.M., Hou, X.Y., Zhang, X.M., He, X.Q. and Lee, S.T.: Real-time observation of temperature rise and thermal breakdown processes in organic LEDs using an IR imaging and analysis system. Adv. Mater. 12, 265 (2000).3.0.CO;2-L>CrossRefGoogle Scholar
11.Anjos, N.M. Paulo dos, Aziz, H., Hu, N-X. and Popovic, Z.D.: Temperature dependence of electroluminescence degradation in organic light-emitting devices without and with a copper phthalocyanine buffer layer. Org. Electron. 3, 9 (2002).CrossRefGoogle Scholar
12.Schreiber, F., Gerstenberg, M.C., Dosch, H. and Scoles, G.: Melting point enhancement of a self-assembled monolayer induced by a van der Waals bound capping layer. Langmuir 19, 10004 (2003).CrossRefGoogle Scholar
13.Fenter, P., Schreiber, F., Bulović, V. and Forrest, S.R.: Thermally induced failure mechanisms of organic light emitting device structures probed by x-ray specular reflectivity. Chem. Phys. Lett. 277, 521 (1997).CrossRefGoogle Scholar
14.Krause, B., Dürr, A.C., Schreiber, F., Dosch, H. and Seeck, O.H.: Thermal stability and partial dewetting of crystalline organic thin films: 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(111). J. Chem. Phys. 119, 3429 (2003).CrossRefGoogle Scholar
15.Kim, K.M., Jang, B.J., Cho, W.S. and Ju, S.H.: The property of encapsulation using thin film multi layer for application to organic light emitting device. Curr. Appl. Phys. 5, 64 (2005).CrossRefGoogle Scholar
16.Kim, G.H., Oh, J., Yang, Y.S., Do, L-M. and Suh, K.S.: Lamination process encapsulation for longevity of plastic-based organic light-emitting devices. Thin Solid Films 467, 1 (2004).CrossRefGoogle Scholar
17.Lee, J.H., Kim, G.H., Kim, S.H., Lim, S.C., Yang, Y.S., Oh, J., Youk, J.H., Jang, J. and Zyung, T.: The novel encapsulation method for organic thin-film transistors. Curr. Appl. Phys. 5, 348 (2005).CrossRefGoogle Scholar
18.Munro, R.G.: Evaluated material properties for a sintered αalumina. J. Am. Ceram. Soc. 80, 1919 (1997).CrossRefGoogle Scholar
19.Gitzen, W.H.: Alumina as a Ceramic Material (The American Ceramic Society, Westerville, OH, 1997).Google Scholar
20.Karl, N. Charge-carrier mobility in organic molecular crystals, in Organic Electronic Materials, Springer Series in Materials Science, Vol. 41, edited by Farchioni, R. and Grosso, G. (Springer, Berlin, Germany, 2001), Chap. 3.Google Scholar
21.Dürr, A.C., Schreiber, F., Münch, M., Karl, N., Krause, B., Kruppa, V. and Dosch, H.: High structural order in thin films of the organic semiconductor diindenoperylene. Appl. Phys. Lett. 81, 2276 (2002).CrossRefGoogle Scholar
22.Sellner, S., Gerlach, A., Schreiber, F., Kelsch, M., Kasper, N., Dosch, H., Meyer, S., Pflaum, J., Fischer, M. and Gompf, B.: Strongly enhanced thermal stability of crystalline organic thin films induced by aluminum oxide capping layers. Adv. Mater. 16, 1750 (2004).CrossRefGoogle Scholar
23.Bhatia, C.S., Guthmiller, G. and Spool, A.M.: Alumina films by sputter deposition with Ar/O2: Preparation and characterization. J. Vac. Sci. Technol. A 7, 1298 (1989).CrossRefGoogle Scholar
24.Cueff, R., Baud, G., Besse, J.P. and Jacquet, M.: Study of thin alumina coatings sputtered on polyethylene terephthalate films. Thin Solid Films 266, 198 (1995).CrossRefGoogle Scholar
25.Koski, K., Hölsä, J. and Juliet, P.: Properties of aluminium oxide thin films deposited by reactive magnetron sputtering. Thin Solid Films 339, 240 (1999).CrossRefGoogle Scholar
26.Lee, J., Kim, S.S. and Im, S.: Electrical properties of aluminum oxide films deposited on indium-tin-oxide glasses. J. Vac. Sci. Technol. B 21, 953 (2003).CrossRefGoogle Scholar
27.Zywitzki, O. and Hoetzsch, G.: Influence of coating parameters on the structure and properties of Al2O3 layers reactively deposited by means of pulsed magnetron sputtering. Surf. Coat. Technol. 86–87, 640 (1996).CrossRefGoogle Scholar
28.Schreiber, F.: Organic molecular beam deposition: Growth studies beyond the first monolayer. Phys. Status Solidi 201, 1037 (2004).CrossRefGoogle Scholar
29.Witte, G. and Wöll, C.: Growth of aromatic molecules on solid substrates for applications in organic electronics. J. Mater. Res. 19, 1889 (2004).CrossRefGoogle Scholar
30.Dürr, A.C., Schreiber, F., Ritley, K.A., Kruppa, V., Krug, J., Dosch, H. and Struth, B.: Rapid roughening in thin film growth of an organic semiconductor (diindenoperylene). Phys. Rev. Lett. 90, 016104 (2003).CrossRefGoogle ScholarPubMed
31.Dürr, A.C., Schreiber, F., Kelsch, M. and Dosch, H.: Optimized preparation of cross sectional TEM specimens of organic thin films. Ultramicroscopy 98, 51 (2003).CrossRefGoogle ScholarPubMed
32.D’Heurle, F.M. and Harper, J.M.E.: Note on the origin of intrinsic stresses in thin films deposited via evaporation and sputtering. Thin Solid Films 171, 81 (1989).CrossRefGoogle Scholar
33.Parfitt, L., Goldiner, M., Jones, J.W. and Was, G.S.: Residual stresses in amorphous alumina films synthesized by ion-beam-assisted deposition. J. Appl. Phys. 77, 3029 (1995).CrossRefGoogle Scholar
34.Koski, K., Hölsä, J., Juliet, P., Wang, Z.H., Aimo, R. and Pischow, K.: Characterisation of aluminium oxide thin films deposited on polycarbonate substrates by reactive magnetron sputtering. Mater. Sci. Eng. B 65, 94 (1999).CrossRefGoogle Scholar
35.Paulus, H. and Bolse, W. (unpublished).Google Scholar
36.Dürr, A.C., Schreiber, F., Kelsch, M., Carstanjen, H.D. and Dosch, H.: Morphology and thermal stability of metal contacts on crystalline organic thin films. Adv. Mater. 14, 961 (2002).3.0.CO;2-X>CrossRefGoogle Scholar
37.Scharnberg, M., Hu, J., Kanzow, J., Rätzke, K., Adelung, R., Faupel, F., Pannemann, C., Hilleringmann, U., Meyer, S. and Pflaum, J.: Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics. Appl. Phys. Lett. 86, 024104 (2005).CrossRefGoogle Scholar
38.Dürr, A.C., Koch, N., Kelsch, M., Rühm, A., Ghijsen, J., Johnson, R.L., Pireaux, J-J., Schwartz, J., Schreiber, F., Dosch, H. and Kahn, A.: Interplay between morphology, structure and electronic properties at diindenoperylene-gold interfaces. Phys. Rev. B 68, 115428 (2003).CrossRefGoogle Scholar
39.Meyer, S., Sellner, S., Schreiber, F., Dosch, H., Ulbricht, G., Fischer, M., Gompf, B., and Pflaum, J. (unpublished).Google Scholar
40.Niemax, J. and Pflaum, J. (unpublished).Google Scholar