Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T17:37:34.479Z Has data issue: false hasContentIssue false

Mechanical properties of β″ precipitates containing Al and/or Cu in age hardening Al alloys

Published online by Cambridge University Press:  03 March 2016

Yue Qiu
Affiliation:
State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, Hunan,China
Yi Kong*
Affiliation:
State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, Hunan,China
ShiDi Xiao
Affiliation:
State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, Hunan,China
Yong Du*
Affiliation:
State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, Hunan,China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Evidences show that the composition of β″ formed in age hardening of Al alloys should be the prototype Mg5Si6 with Al and/or Cu addition. In the present work, molecular dynamics simulations are carried out to investigate the influence of the addition of Al and/or Cu to the mechanical properties of the prototype Mg5Si6. Our simulations imply that Mg5Si6 with both Al and Cu addition has relatively poor mechanical performance when compared with other three models. The snapshots of atomic configurations during uniaxial tension test illustrate that only if both Al and Cu dissolve in β″, clusters can form through Al atoms segregating around Cu atoms, thus applying different stress fields on the Al matrix, resulting different mechanical properties in comparison with other three β″ models.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Marioara, C.D., Andersen, S.J., Zandbergen, H.W., and Holmestad, R.: The influence of alloy composition on precipitates of the Al–Mg–Si system. Metall. Mater. Trans. A 36(3), 691 (2005).Google Scholar
Andersen, S.J., Marioara, C.D., Frøseth, A., Vissers, R., and Zandbergen, H.W.: Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β″ phases. Mater. Sci. Eng., A 390(1–2), 127 (2005).Google Scholar
Daoudi, M., Triki, A., and Redjaimia, A.: DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy. J. Therm. Anal. Calorim. 104(2), 627 (2011).Google Scholar
Holmestad, R., Bjørge, R., Ehlers, F.J.H., Torsæter, M., Marioara, C.D., and Andersen, S.J.: Characterization and structure of precipitates in 6xxx aluminium alloys. J. Phys.: Conf. Ser. 371, 012082 (2012).Google Scholar
Torsæter, M., Lefebvre, W., Marioara, C.D., Andersen, S.J., Walmsley, J.C., and Holmestad, R.: Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys. Scr. Mater. 64(9), 817 (2011).Google Scholar
Marioara, C.D., Andersen, S.J., Stene, T.N., Hasting, H., Walmsley, J., Van Helvoort, A.T.J., and Holmestad, R.: The effect of Cu on precipitation in Al–Mg–Si alloys. Philos. Mag. 87(23), 3385 (2007).Google Scholar
Panigrahi, S.K. and Jayaganthan, R.: Effect of annealing on precipitation, microstructural stability, and mechanical properties of cryorolled Al 6063 alloy. J. Mater. Sci. 45(20), 5624 (2010).Google Scholar
Sha, G., Möller, H., Stumpf, W.E., Xia, J.H., Govender, G., and Ringer, S.P.: Solute nanostructures and their strengthening effects in Al–7Si–0.6Mg alloy F357. Acta Mater. 60(2), 692 (2012).CrossRefGoogle Scholar
Ehlers, F.J.H., Wenner, S., Andersen, S.J., Marioara, C.D., Lefebvre, W., Boothroyd, C.B., and Holmestad, R.: Phase stabilization principle and precipitate-host lattice influences for Al–Mg–Si–Cu alloy precipitates. J. Mater. Sci. 49(18), 6413 (2014).CrossRefGoogle Scholar
Andersen, S.J., Zandbergen, H.W., Jansen, J., TrÆholt, C., Tundal, U., and Reiso, O.: The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Mater. 46(9), 3283 (1998).Google Scholar
Zandbergen, H.W., Andersen, S.J., and Jansen, J.: Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science 277, 1221 (1997).Google Scholar
Ehlers, F.J.H.: Ab initio interface configuration determination for β″ in Al–Mg–Si: Beyond the constraint of a preserved precipitate stoichiometry. Comput. Mater. Sci. 81, 617 (2014).Google Scholar
Li, K., Béché, A., Song, M., Sha, G., Lu, X., Zhang, K., Du, Y., Ringer, S.P., and Schryvers, D.: Atomistic structure of Cu-containing β″ precipitates in an al–Mg–Si–Cu alloy. Scr. Mater. 75, 86 (2014).Google Scholar
Yuan, L., Shan, D., and Guo, B.: Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum. J. Mater. Process. Technol. 184(1–3), 1 (2007).Google Scholar
Luo, J., Dahmen, K., Liaw, P.K., and Shi, Y.: Low-cycle fatigue of metallic glass nanowires. Acta Mater. 87, 225 (2015).Google Scholar
Luo, J. and Shi, Y.: Tensile fracture of metallic glasses via shear band cavitation. Acta Mater. 82, 483 (2015).CrossRefGoogle Scholar
Ju, L.: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11(2), 173 (2003).Google Scholar
Wang, L. and Liu, H.: The microstructural evolution of Al12Mg17 alloy during the quenching processes. J. Non-Cryst. Solids 352(26–27), 2880 (2006).CrossRefGoogle Scholar
Jelinek, B., Groh, S., Horstemeyer, M.F., Houze, J., Kim, S.G., Wagner, G.J., Moitra, A., and Baskes, M.I.: Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 85(24), 245102–1 (2012).Google Scholar
Pilipenko, D., Natanzon, Y., and Emmerich, H.: Influence of temperature dependence of bulk modulus on crack propagation velocity. J. Ceram. Sci. Technol. 05, 77 (2014).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dyanmics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684 (1984).Google Scholar
Kong, Y., Shen, L., Proust, G., and Ranzi, G.: Al–Pd interatomic potential and its application to nanoscale multilayer thin films. Mater. Sci. Eng., A 530, 73 (2011).CrossRefGoogle Scholar
Vodenitcharova, T., Kong, Y., Shen, L., Dayal, P., and Hoffman, M.: Nano/micro mechanics study of nanoindentation on thin Al/Pd films. J. Mater. Res. 30(05), 699 (2015).Google Scholar
Martienssen, W. and Warlimont, H. (eds.): Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005).Google Scholar
Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 16 (1996).Google Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).Google Scholar
Zhang, B., Wu, L., Wan, B., Zhang, J., Li, Z., and Gou, H.: Structural evolution, mechanical properties, and electronic structure of Al–Mg–Si compounds from first principles. J. Mater. Sci. 50(19), 6498 (2015).Google Scholar
Ravi, C.: First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Mater. 52(14), 4213 (2004).Google Scholar
Andersen, S.J., Marioara, C.D., Vissers, R., Frøseth, A., and Zandbergen, H.W.: The structural relation between precipitates in Al–Mg–Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2 . Mater. Sci. Eng., A 444(1–2), 157 (2007).Google Scholar