Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T07:28:44.523Z Has data issue: false hasContentIssue false

Mechanical properties of nanophase TiO2 as determined by nanoindentation

Published online by Cambridge University Press:  31 January 2011

M. J. Mayo
Affiliation:
Ceramics Development Division, Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185
R. W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
A. Narayanasamy
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
W. D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Get access

Abstract

Nanoindenter techniques have been used to determine the hardness. Young's modulus, and strain rate sensitivity of nanophase TiO2, which is currently available only in very small quantities and which cannot be tested by most conventional techniques. Hardness and Young's modulus both increase linearly with sintering temperature over the range 25–900°C but come to within only 50–70% of the single crystal values. Strain rate sensitivity, on the other hand, is measurably greater for this material than for single crystal rutile, and the value of strain rate sensitivity increases as the grain size and the sintering temperature are decreased. In its as-compacted form, the strain rate sensitivity of nanophase TiO2 is approximately a quarter that of lead at room temperature, indicating a potential for significant ductility in these ceramic materials. Finally, a significant scatter in hardness values has been detected within individual nanophase samples. This is interpreted as arising from microstructural inhomogeneity in these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Birringer, R., Gleiter, H., Klein, H-P., and Marquardt, P., Phys. Lett. 102A, 365(1984).CrossRefGoogle Scholar
2Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Met. 27, 43(1986).Google Scholar
3Siegel, R.W. and Hahn, H., Current Trends in the Physics of Materials, edited by Yussouff, M. (World Scientific Publishing Co., Singapore, 1987), p. 403.Google Scholar
4Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R.W., J. Mater. Res. 4 (5), 1246(1989).CrossRefGoogle Scholar
5Li, Zongquan, Hahn, H., and Siegel, R.W., Mater. Lett. 6, 342(1988).CrossRefGoogle Scholar
6Epperson, J. E., Siegel, R.W., White, J.W., Klippert, T.E., Narayanasamy, A., Eastman, J. A., and Trouw, F. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1989), Vol. 132, p. 15.Google Scholar
7Siegel, R.W., Ramasamy, S., Hahn, H., Zongquan, Li, Ting, Lu, and Gronsky, R., J. Mater. Res. 3 (6), 1367(1988).CrossRefGoogle Scholar
8Hahn, H., Logas, J., and Averback, R. S., J. Mater. Res. 5 (3), 609(1990).CrossRefGoogle Scholar
9Hahn, H., Logas, J., Höfler, H-J., Bier, Th., and Averback, R. S.(Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1989), Vol. 132, p. 35.Google Scholar
10Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601(1986).CrossRefGoogle Scholar
11Mayo, M. J., Ph.D. dissertation (Stanford University, 1988).Google Scholar
12Ceramic Source '86 (American Ceramic Society, Columbus, OH, 1985), p. 350.Google Scholar
13Wakai, F., Sakaguchi, S., and Matsuno, Y., Adv. Ceram. Mat. 1, 259 (1986).Google Scholar
14Wakai, F. and Kato, H., Adv. Ceram. Mat. 3, 71(1988).Google Scholar
15Nieh, T. G., McNally, C. M., and Wadsworth, J., Scripta Metall. 22, 1297(1988).CrossRefGoogle Scholar
16Mayo, M. J. and Nix, W. D., Proc. 8th Int. Conf. on the Strength of Metals and Alloys, edited by Kettunen, P. O., Lepisto, T. K., and Lehtonen, M. E. (Pergamon Press, New York, 1988), p. 1415.Google Scholar
17Siegel, R.W. and Eastman, J.A. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1989), Vol. 132, p. 3.Google Scholar
18Hahn, H., Höfler, H-J., and Averback, R.S., to be published in Mater. Sci. Forum.Google Scholar
19Averback, R. S., Hahn, H., Höfler, H-J., Logas, J. L., and Shen, T. C. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1989), Vol. 153, p. 3.Google Scholar
20Rice, Roy W., Mater. Sci. and Eng. 73, 215(1985).CrossRefGoogle Scholar
21Martin, P. J. and Backofen, W. A., Trans. ASM 60, 352(1967).Google Scholar
22Morrison, W. B., Trans. AIME 242, 2221(1968).Google Scholar
23Grivas, D., Murty, K. L., and Morris, J.W., Jr., Acta Metall. 27, 731(1979).CrossRefGoogle Scholar
24Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556(1987).CrossRefGoogle Scholar
25Cahn, R.W., Nature 332, 112(1988).CrossRefGoogle Scholar
26Birringer, R. and Gleiter, H., Encyclopedia of Mater. Sci. and Eng., Suppl. Vol. 1, edited by Cahn, R.W. (Pergamon Press, New York, 1988), p. 339.Google Scholar