Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T22:11:56.512Z Has data issue: false hasContentIssue false

Mechanical properties of biocompatible protein polymer thin films

Published online by Cambridge University Press:  31 January 2011

Christopher J. Buchko
Affiliation:
2022 H.H. Dow, Department of Materials Science and Engineering, Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, Michigan 48109-2136
Margaret J. Slattery
Affiliation:
2022 H.H. Dow, Department of Materials Science and Engineering, Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, Michigan 48109-2136
Kenneth M. Kozloff
Affiliation:
2022 H.H. Dow, Department of Materials Science and Engineering, Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, Michigan 48109-2136
David C. Martin
Affiliation:
2022 H.H. Dow, Department of Materials Science and Engineering, Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, Michigan 48109-2136
Get access

Extract

A silklike protein with fibronectin functionality (SLPF) (ProNectin F®, Protein Polymer Technologies, Inc.) is a genetically engineered protein polymer containing structural and biofunctional segments. The mechanical properties and deformation mechanisms of electrostatically deposited SLPF thin films were examined by scratch testing, tensile testing, and nanoindentation. Scanning electron microscopy and scanned probe microscopy revealed that the macroscopic properties were a sensitive function of microstructure. The SLPF films were relatively brittle in tension, with typical elongation-to-break values of 3%. Nanoindentation data were fit to a power law relationship.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Anderson, J.P., Nilsson, S.C., Rajachar, R.M., Logan, R., Weissman, N.A., and Martin, D.C., in Biomolecular Materials by Design, edited by Alper, M., Bayley, H., Kaplan, D., and Navia, M. (Mater. Res. Soc. Symp. Proc. 330, Pittsburgh, PA, 1994), pp. 171177.Google Scholar
2.Buchko, C.J., Kozloff, K.M., Sioshansi, A., O'Shea, K.S., and Martin, D.C. in Thin Films and Surfaces for Bioactivity and Biomedical Applications, edited by Cotell, C.M., Meyer, A.E., Gorbatkin, S.M., and Grobe, G.L. (Mater. Res. Soc. Symp. Proc. 414, Pittsburgh, PA, 1996), pp. 2328.Google Scholar
3.Buchko, C.J., Ph.D. Dissertation, U. of Michigan, Ann Arbor, MI (1997).Google Scholar
4.Anderson, D.J., Najafi, K., Tanghe, S.J., Evans, D.A., Levy, K.L., Hetke, J.F., Xue, X., Zappia, J.J., and Wise, K.D., IEEE Trans. Biomed. Eng. 36, 693 (1989).CrossRefGoogle Scholar
5.Niparko, J.K., Altschuler, R.A., Xue, X., Wiler, J.A., and Anderson, D.J., Ann. Otolaryng., Rhinolaryng., Laryng. 89, 965 (1989).Google Scholar
6.Cappello, J., Crissman, J., Dornan, M., Mikolajczak, M., Textor, G., Marquet, M., and Ferrari, F., Biotechnol. Prog. 6, 198 (1990).CrossRefGoogle Scholar
7.Weppelmann, E.R., Field, J.S., Swain, M.V., J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
8.Hirakawa, K., Hashizume, K., and Hayashi, T., Brain Nerve 33, 1057 (1981).Google Scholar
9.Chalker, P.R., Bull, S.J., and Rickerby, D.S., Mater. Sci. Eng. A 140, 583 (1991).CrossRefGoogle Scholar
10.Buchko, C.J., Chen, L.C., Shen, Y., and Martin, D.C., Polymer 40, 7397 (1999).CrossRefGoogle Scholar
11.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
12.Ritter, J.E., Lardner, T.J., Rosenfield, L., and Lin, M.R., J. Appl. Phys. 66, 3626 (1989).CrossRefGoogle Scholar
13.Ritter, J.E., Sioui, D.R., and Lardner, T.J., Poly. Eng. Sci. 32, 1366 (1992).CrossRefGoogle Scholar
14.Briscoe, B.J., Sebastian, K.S., and Sinha, S.K., Philos. Mag. A. 74, 1159 (1996).CrossRefGoogle Scholar
15.Johnson, K.L., Contact Mechanics (Cambridge Univ. Press, Cambridge, United Kingdom, 1985).CrossRefGoogle Scholar
16.Field, J.S. and Swain, M.V., J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
17.Loubet, J.L., Georges, J.M., and Meille, G., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 7289.Google Scholar
18.Hainsworth, S.V., Chandler, H.W., and Page, T.F., J. Mater. Res. 11, 1987 (1996).CrossRefGoogle Scholar
19.Lock, R.L., European Patent No. 93109484 (1992).Google Scholar
20.Lock, R.L., U.S. Patent No. 5 171 505 (December 1992).Google Scholar
21.Cappello, J. and McGrath, K.P., in Silk Polymers, edited by Kaplan, D., Adams, W.W., Farmer, B., and Viney, C. (ACS Symp. Ser. 544, Washington, DC, 1994), pp. 311327.CrossRefGoogle Scholar
22.Lauterwasser, B.D. and Kramer, E., Philos. Mag. A. 39, 467 (1979).CrossRefGoogle Scholar
23.Bais-Singh, S. and Goswami, B.C., J. Text. Inst. 86, 271 (1995).CrossRefGoogle Scholar
24.Pan, N., Text. Res. J. 63, 336 (1993).Google Scholar
25.Klempner, D. and Frisch, K.C., Handbook of Polymeric Foams and Foam Technology (Hanser, Munich, Germany, 1991).Google Scholar
26.Gibson, L.J., and Ashby, M.F., Cellular Solids Structure and Properties (Pergamon Press, New York, 1988).Google Scholar
27.Martin, D.C., Jiang, T., and Buchko, C.J. in Protein-Based Materials, edited by McGrath, K. and Kaplan, D. (Birkhauser, Boston, MA, 1997), pp. 339370.CrossRefGoogle Scholar
28.Jayachandran, R., Boyce, M.C., and Argon, A.S., J. Adhes. Sci. Technol. 7, 813 (1993).CrossRefGoogle Scholar