Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T03:44:41.218Z Has data issue: false hasContentIssue false

Mechanical properties and microstructural analysis of a diamond-like carbon coating on an alumina/glass composite

Published online by Cambridge University Press:  31 January 2011

S. Christiansen
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften-Mikrocharakterisierung, Cauerstr. 6, 91058 Erlangen, Germany
M. Albrecht
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften-Mikrocharakterisierung, Cauerstr. 6, 91058 Erlangen, Germany
H. P. Strunk
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften-Mikrocharakterisierung, Cauerstr. 6, 91058 Erlangen, Germany
H. Hornberger
Affiliation:
University of Birmingham, School of Dentistry, Biomaterials Unit, St. Chad's Queensway, Birmingham B4 6NN, United Kingdom
P.M. Marquis
Affiliation:
University of Birmingham, School of Dentistry, Biomaterials Unit, St. Chad's Queensway, Birmingham B4 6NN, United Kingdom
J. Franks
Affiliation:
Diavac ACM Ltd., 2 Brookfield Ave., Ealing, London W5 1LA, United Kingdom
Get access

Abstract

We investigate the mechanical and microstructural properties of a diamond-like carbon coating (DLC) which is deposited by plasma enhanced chemical vapor deposition (PECVD) onto an alumina/aluminosilicate glass composite used for biomedical applications. Ball-on-ring tests yield a fracture strength that is essentially influenced by the surface topology/roughness. The surface topology of the coating is investigated by atomic force microscopy (AFM). Tribology tests and nanoindentation represent the wear resistance and hardness; these are properties that are mainly influenced by the microstructural properties of the DLC coating. This microstructure is investigated by transmission electron microscopy (TEM) and analyzed by parallel electron energy loss spectroscopy (PEELS). For the general applicability of the coated composite, the interfacial adhesion of the DLC coating on the comparably rough substrate (roughness amplitudes and wavelengths are in the micrometer range) is important. Therefore, we focus on TEM investigations that show the interface to be free of gaps and pores that we, together with a characteristic microstructure adjacent to the interface, relate to the excellent adhesion. The interlayer consists of a high density of SiC grains, part of them directly bound to the substrate, and part of them bound to other SiC grains. This interlayer is followed by an essentially different region of the coating as concerns the microstructure; this region consists of nanocrystalline diamond particles embedded in an amorphous carbon matrix. It is this heterogeneous microstructure to which we attribute (i) the good adhesion based upon the interface stabilizing SiC grains, and (ii) the high hardness and wear resistance based upon the diamond nanocrystals in the coating.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.McColl, I. R., Grant, D.M., Green, S. M., Wood, J.V., Parker, T.L., Parker, K. G., Goruppa, A. A., and St, N.. Braithwaite, Diamond Relat. Mater. 3, 83 (1993).CrossRefGoogle Scholar
2.Parker, T. L., Parker, K.G., McColl, I.R., Grant, D. M., and Wood, J.V., Diamond Relat. Mater. 3, 1120 (1994).CrossRefGoogle Scholar
3.Narayan, J., Fan, W. D., Narayan, R. J., Tiwari, P., and Stadelmaier, H.H., Mater. Sci. Eng. B25, 5 (1995).Google Scholar
4.Mitura, E., Mitura, S., Niedzielski, P., Has, Z., Wolowiec, R., Jakubowski, A., Szmidt, S., Sokolowska, A., Louda, P., Marciniak, J., and Koczy, B., Diamond Relat. Mater. 3, 896 (1994).Google Scholar
5.Hornberger, H. and Marquis, P.M., Glastech. Ber. Glass Sci. Technol. 68, 1 (1995).Google Scholar
6.Hornberger, H., Christiansen, S., Marquis, P. M., and Strunk, H. P., J. Mater. Res. 11, 855 (1996).CrossRefGoogle Scholar
7.McColm, I. J. and Clark, N. J., in Forming, Shaping and Working of High Performance Ceramics (Blackie and Son, Glasgow, 1988), p. 155.Google Scholar
8.Franks, J., Enke, K., and Richardt, A., Metals Mater. 6, 695 (1990).Google Scholar
9.Shetty, D. K., Rosenfield, A., McGuire, P., Bansal, G. K., and Duckworth, W. H., Ceram. Bull. 59, 1193 (1980).Google Scholar
10.Chatfield, C., in Statistics for Technology (Chapman and Hall, London, 1978), pp. 8186.CrossRefGoogle Scholar
11.Wegst, C. W., in Stahlschlüssel, Verlag Stahlschlüssel Wegst GMBH, 127 (1995).Google Scholar
12.Acheson, E. G., Brit. Pat. 17, 911 (1982).Google Scholar
13.Berger, S. D. and McKenzie, D. R., Philos. Mag. Lett. 57, 285 (1988).CrossRefGoogle Scholar
14.Rice, J. R. and Thompson, R., Philos. Mag. 29, 73 (1974).Google Scholar
15.Yang, W. H. and Srolovitz, D. J., Phys. Rev. Lett. 71, 1593 (1993).Google Scholar
16.Chiu, C. H. and Gao, H., in Mechanisms of Thin Film Evolution, edited by Yalisove, S. M., Thompson, C. V., and Eaglesham, D. J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 369.Google Scholar
17.Tetelman, A. S. and McEvily, A. J., Fracture of Structural Materials (John Wiley and Sons, Inc., New York, London, Sydney, 1967).Google Scholar
18.Schaefer, L., Blum, A., Sattler, M., and Klages, C. P., in Applications of Diamond Films and Rel. Mat.: Third International Conference, edited by Feldman, A., Tzeng, Y., Yarbrough, W. A., Yoshikawa, M., and Murakawa, M. (1995).Google Scholar
19.Pirouz, P., Yang, J.W., Ultramicroscopy 51, 189 (1993).Google Scholar
20.VanLanduyt, J., Van Tendeloo, G., and Amelinckx, S., Progress in Crystal Growth and Characterization 7, 343 (1983).CrossRefGoogle Scholar
21.Edington, J. W., Practical Electron Microscopy in Materials Science (VNR Company, Eindhoven, 1976), p. 89.Google Scholar
22.Tairov, Y. M., Tsvetkov, V. F., and Krishna, H., Progress in Crystal Growth and Characterization 7, 111 (1983).CrossRefGoogle Scholar
23.Jepps, N. W., Page, T. F., and Krishna, H., Progress in Crystal Growth and Characterization 7, 259 (1983).Google Scholar