Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T07:52:47.504Z Has data issue: false hasContentIssue false

Mechanical Performance of 3Y-TZP/Ni Composites: Tensile, Bending, and Uniaxial Fatigue Tests

Published online by Cambridge University Press:  31 January 2011

S. Loópez
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), Cantoblanco, 28049 Madrid, Spain
J. F. Bartolomeé
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), Cantoblanco, 28049 Madrid, Spain
J. S. Moya*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), Cantoblanco, 28049 Madrid, Spain
T. Tanimoto
Affiliation:
Shonan Institute of Technology, Tsujido-Nishikaigan, Fujisawa, Kanagawa 251, Japan
*
a)Address all correspondence to this author.
Get access

Abstract

Dense 3-mol%-yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP/Ni) homogeneous composites were prepared by a wet-processing route with metal concentration ranging from 0 to 40 vol%. Cyclic fatigue stress/life, tensile and bending strength, and fracture toughness were investigated in 3Y-TZP monolithic samples and 3Y-TZP/Ni composites. It was found that the addition of Ni particles to the 3Y-TZP matrix produced an embrittlement effect in the composites, decreasing the mechanical properties. This fact was attributed to the weak bonding between the Ni and 3Y-TZP particles in samples sintered in a reductive atmosphere. Additionally, the presence of Ni particles decreases the cyclic tensile fatigue of the composites probably by an environmentally assisted slow crack growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birkby, I. and Stevens, R., Applications of Zirconia Ceramics (Key Engineering Materials), Vols. 122–124 (1996), pp. 527, 552Google Scholar
Green, D.J., Hannink, R.H.J., and Swain, M.V., Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1989), p. 141.Google Scholar
Schneider, S.J. Jr., Engineered Materials Handbook: Ceramics and Glasses (ASM International, 1991), Vol. 4, pp. 776976.Google Scholar
CRC Handbook of Chemistry and Physics, edited by Lide, D.R. and Frederikse, H.P.R. (CRC Press, Boca Raton, FL, 1994), pp. 12–53, 12159.Google Scholar
Encyclopedia of Chemical Technology, 3rd ed, Kirk-Othmer, , (John Wiley & Sons, New York, 1981), Vol. 15, p. 788.Google Scholar
Qin, C-D. and Derby, B., J. Mater. Res. 6, 1480 (1992).CrossRefGoogle Scholar
Sundeen, J.E. and Buchanan, R.C., Sens. Actuators A-Phys. 63, 33 (1997).CrossRefGoogle Scholar
Takemura, M., Hyakubu, T., Yoshitake, A., Tamura, M., Niino, M., and Kumakawa, A., in Functionally Gradient Materials, Ceramic Transactions, edited by Holt, J.B., Koizumi, M., Hirai, T., and Munir, Z.A., (Proc. 2nd Int. Symp. Funct. Grad. Mater., San Francisco, CA, 1993), Vol. 34, pp. 271278.Google Scholar
Kuroda, Y., Kusaka, K., Moron, A., and Togawa, M., in Functionally Gradient Materials, Ceramic Transactions, edited by Holt, J.B., Koizumi, M., Hirai, T., and Munir, Z.A., (Proc. 2nd Int. Symp. Funct. Grad. Mat., San Francisco, CA, 1993), Vol. 34, pp. 289296.Google Scholar
Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
Heinrich, J.G. and Aldinger, F., Ceramic Materials and Components for Engines (Wiley-VCH, Weinheim, Germany, 2001).CrossRefGoogle Scholar
Pecharromán, C., López-Esteban, S., Bartolomé, J.F., and Moya, J.S., J. Am. Ceram. Soc. 84, 2439 (2001).CrossRefGoogle Scholar
Fu, R. and Zhang, T.Y., J. Am. Ceram. Soc. 83, 1215 (2000).CrossRefGoogle Scholar
Freiman, S.W. and Pohanka, R.C., J. Am. Ceram. Soc. 72, 2258 (1989).CrossRefGoogle Scholar
Blamey, J.M. and Parry, T.V., J. Mater. Sci. 28, 4311 (1993).CrossRefGoogle Scholar
Fulman, P.L., Trans. AIME 197, 447 (1953).Google Scholar
Green, D.J., Lange, F.F., and James, M.R., J. Am. Ceram. Soc. 66, 623 (1983).CrossRefGoogle Scholar
Tanimoto, T. and Okazaki, K., IEEE, 7th Int. Symposium on the Application of Ferroelectrics, (1990), pp. 4043.Google Scholar
Tanimoto, T., Acta Mater. 46, 2455 (1998).Google Scholar
Miranzo, P. and Moya, J.S., Ceram. Int. 10, 147 (1984).CrossRefGoogle Scholar
Sotiropoulou, D. and Ladas, S., Surf. Sci. 408, 182 (1998).Google Scholar
Choi, J-G. and Thompson, L.T., Appl. Surf. Sci. 93, 143 (1996).CrossRefGoogle Scholar
Paris, P.C. and Erdogan, F., Trans. ASME, J. Basic Eng. 85, 528 (1963).Google Scholar
Mommer, N., Lee, T., and Gardner, J.A., J. Mater. Res. 15, 377 (2000).CrossRefGoogle Scholar
Bartolome´, J.F., Diaz, M., Moya, J.S., and Tomsia, A.P., Acta Mater. 47, 3891 (1999).CrossRefGoogle Scholar
Fahrenholtz, W.G., Ellerby, D.T., and Loehman, R.E., J. Am. Ceram. Soc. 83, 1279 (2000).CrossRefGoogle Scholar
Tuan, W.H., Wu, H.H., and Yang, T.J., J. Mater. Sci. 30, 855 (1995).CrossRefGoogle Scholar
Tuan, W.H. and Brook, R.J., J. Eur. Ceram. Soc. 6, 31 (1990).Google Scholar
Sun, X. and Yeomans, J.A., J. Am. Ceram. Soc. 79, 562 (1996).CrossRefGoogle Scholar
Breval, E., Deng, Z., Chiou, S., and Pantano, C.G., J. Mater. Sci. 27, 1464 (1992).Google Scholar
Jones, S.A., Burlitch, J.M., Üstündag, E., Yoo, J., and Zehnder, A.T., in Ceramic Matrix Composites Advanced High-Temperature Materials, edited by Lowden, R.A., Ferber, M.K., Hellman, J.R., Chawla, K.K., and DiPietro, S.G. (Mater. Res. Soc. Symp. Proc. 365, Pittsburgh, PA, 1995), pp. 5358.Google Scholar
Kahn, A.A. and Labbe, J.C., J. Mater. Sci. 32, 382 (1997).Google Scholar
Huang, J-L. and Li, Ch-H., J. Mater. Res. 9, 3153 (1994).CrossRefGoogle Scholar
Flinn, B.D., Ru¨hle, M., and Evans, A.G., Acta Metall. Mater. 37, 3001 (1989).CrossRefGoogle Scholar
Duh, J.G. and Chien, W.S., J. Mater. Sci. 25, 1529 (1990).CrossRefGoogle Scholar
Wu, Y.C. and Duh, J.G., J. Mater. Sci. Lett. 9, 583 (1990).CrossRefGoogle Scholar
Zhu, J.C., Lee, S.Y., Yin, Z.D., and Lai, Z.H., in Functionally Graded Materials 1996, edited by I. Shiota and Miyamoto, M.Y. (Elsevier Science, Amsterdam, The Netherlands, 1997), pp. 203208.Google Scholar
Huang, M., Jiang, L., Liaw, P.K., Brooks, Ch.R., Seedley, R., and Klarstrom, D.L.J. Mater. 50, 1 (1998).Google Scholar
Hamstad, M.A., Exper. Mech. 26, 7 (1986).CrossRefGoogle Scholar
Evans, A.G. and Fuller, E.R., Metall. Trans. 5, 27 (1974).CrossRefGoogle Scholar
Evans, A.G., Int. J. Fracture 16, 485 (1980).Google Scholar
Davies, C.K.L., Guiu, F., Li, M., Reece, M.J., and Torrecillas, R., J. Eur. Ceram. Soc. 18, 221 (1998).Google Scholar
Knechtel, M., García, D., Rödel, J., and Claussen, N., J. Am. Ceram. Soc. 76, 2681 (1993).Google Scholar
Chevalier, J., Olagnon, C., Fantozzi, G., and Cales, B., J. Am. Ceram. Soc. 78, 1889 (1995).CrossRefGoogle Scholar
Alcala´, J. and Anglada, M., J. Am. Ceram. Soc. 80, 2759 (1998).CrossRefGoogle Scholar
Yin, H., Gao, M., and Wei, R.P., Acta Metall. Mater. 43, 371 (1995).CrossRefGoogle Scholar