Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T05:35:25.312Z Has data issue: false hasContentIssue false

The mechanical behavior of a passivating surface under potentiostatic control

Published online by Cambridge University Press:  31 January 2011

D. F. Bahr
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
J. C. Nelson
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
N. I. Tymiak
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
W. W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

Continuous microindentation has been carried out on an iron–3% silicon single crystal in 1 M sulfuric acid. The ability of the material to support elastic loading is directly linked to the presence of thermally grown oxide films and passive films applied through potentiostatic control of the sample. When the passive film is removed, either by chemical or electrochemical means, the iron alloy can no longer sustain pressures on the order of the theoretical shear strength of iron. Instead, the metal behaves in a traditional elastic-plastic manner when no film is present. The oxide film at the edges of the indentation can sustain applied tensile stresses up to 1.2 GPa prior to failure. Indentation in materials undergoing dissolution must account for the rate of material removal over the remote surface and the resulting plastic deformation around the contact of the indentation.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vardwell, J. A., MacDougall, B., and Graham, M. J., J. Electrochem. Soc. 135, 413 (1988).CrossRefGoogle Scholar
2.Davenport, A. J., Bardwell, J. A., and Vitus, C. M., J. Electrochem. Soc. 142, 721 (1995).CrossRefGoogle Scholar
3.Biwer, B. M., Pellin, M. J., Schauer, M. W., and Gruen, D. M., Surf. Sci. 176, 377 (1986).CrossRefGoogle Scholar
4.Boucherit, N., Hugot-LeGoff, A., and Joiret, S., Corr. Sci. 32, 497 (1991).CrossRefGoogle Scholar
5.Gane, N. and Bowden, F. P., J. Appl. Phys. 39, 1432 (1968).CrossRefGoogle Scholar
6.Pethica, J. B. and Tabor, D., Surf. Sci. 89, 182 (1979).CrossRefGoogle Scholar
7.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
8.Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res. 8, 685 (1993).CrossRefGoogle Scholar
9.Mann, A. B. and Pethica, J. B., Langmuir 12, 4583 (1996).CrossRefGoogle Scholar
10.Mann, A. B. and Pethica, J. B., in Thin Films and Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J. E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), pp. 153158.Google Scholar
11.Corcoran, S. G., Coltan, R. J., Lilleodden, E. T., and Gerberich, W. W., in Thin Films and Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J. E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), pp. 159164.Google Scholar
12.Gerberich, W. W., Venkataraman, S. K., Huang, H., Harvey, S. E., and Kohlstedt, D. L., Acta Metall. Mater. 43, 1569 (1995).CrossRefGoogle Scholar
13.Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P., and Wyrobek, J. T., Acta Mater. 44, 3585 (1996).CrossRefGoogle Scholar
14.Fontana, M. G., Corrosion Engineering (McGraw-Hill, New York, 1986), p. 349.Google Scholar
15.Latanision, R. M. and Staehle, R. W., Acta Metall. 17, 307 (1969).CrossRefGoogle Scholar
16.Wu, T. W., J. Mater. Res. 6, 407 (1991).CrossRefGoogle Scholar
17. Digital Instruments, Santa Barbara, CA.Google Scholar
18.Kaczorowski, M., Lee, C-S., and Gerberich, W. W., Mater. Sci. Eng. 81, 305 (1986).CrossRefGoogle Scholar
19.Johnson, K. L., Contact Mechanics (Cambridge Univ. Press, Cambridge, 1985), pp. 9395.CrossRefGoogle Scholar
20.Cottrell, A. H., Dislocations and Plastic Flow in Crystals (Oxford Press, Oxford, 1953), p. 9.Google Scholar
21.Gerberich, W. W., Davidson, D. L., and Kaczorowski, M., J. Mech. Phys. Solids. 38, 87 (1990).CrossRefGoogle Scholar
22.Zielinski, W., Huang, H., Venkataraman, S., and Gerberich, W. W., Philos. Mag. 72, 1221 (1995).CrossRefGoogle Scholar
23.Tabor, D., The Hardness of Metals (Oxford Press, Oxford, 1951).Google Scholar
24.Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W. W., J. Mater. Res. 8, 1291 (1993).CrossRefGoogle Scholar
25.Bahr, D. F. and Gerberich, W. W., Metall. Trans. 27A, 3793 (1996).CrossRefGoogle Scholar
26.Rubin, B. T., Electro. Chem. Interfac. Electrochem. 58, 323 (1975).CrossRefGoogle Scholar