Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T22:16:29.538Z Has data issue: false hasContentIssue false

Mechanical alloying studies in the Γ(Fe3Zn10) and Γ1(Fe5Zn21) single and mixed phase compositions

Published online by Cambridge University Press:  31 January 2011

Aszetta Jordan
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221–0012
Zhentong Liu
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221–0012
Oswald N. C. Uwakweh*
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221–0012
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

Homogeneous or uniform crystalline materials are obtained following the ball milling of pure elemental powders of Fe and Zn in proportions to yield single phases Γ(Fe3Zn10), Γ1(Fe5Zn21), and Γ + Γ1 mixed phase (Fe25Zn75). Differential scanning calorimetry (DSC) measurements of the as-milled materials show characteristic stages in the temperature range of 50–600 °C prior to establishing stable equilibrium. The activation energies determined from kinetic analyses range from 49 to 189 kJ/mole in these materials. A characteristic stage at 130 °C marking the distinct evolution of the Γ and Γ1 phases from the intermediate or mixed phase composition is identified from XRD measurements. The identification of a unique Fe site with a quadrupole splitting (QS) of 1.5 mm/s in corroboration with x-ray diffraction (XRD) shows that this stage marks the onset of an in situ transformation prior to the distinct evolution of the homogeneous phases. The Mössbauer effect measurement of the as-milled materials are resolved in terms of four unique Fe sites with QS of 1.1, 0.241, 0.073, and 0.0772 mm/s.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Drewien, C. A., Goldstein, J. I., and Marder, A. R., The Physical Metallurgy of Zinc Coated Steel, edited by Marder, A. R. (1993), p. 265.Google Scholar
2.Jordan, C. E., Goggins, K. M., and Marder, A. R., Metall. Mater. Trans. A 25A, Oct., 2101 (1994).CrossRefGoogle Scholar
3.Urai, M., Terada, M., and Normura, S., Proc. Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH) (ISIJ, Tokyo, Japan, 1989), p. 478.Google Scholar
4.Chakkingal, U. and Wright, R. N., The Development of Intermetallic Phases in Galvannealing Coatings, Proceedings of the Advanced Coatings Technology Conference, Chicago, Illinois, Nov. 3 (1992).Google Scholar
5.Irie, T., Zinc-Based Steel Coating Systems, Metallurgy and Performance, edited by Krauss, G. and Matlock, D. K. (TMS, Warrendale, PA, 1990), p. 143.Google Scholar
6.Gu, M. and Marder, A. R., Plating and Surface Finishing, Jan., 77 (1991).Google Scholar
7.Storey, O. W., Metall. Chem. Eng. 14, 683 (1916).Google Scholar
8.Schueler, J. L., Trans. Am. Electrochem. Soc. 47, 201 (1925).Google Scholar
9.Chen, Z. W., Kennon, N. F., See, J. B., and Barter, M. A., JOM 44 (1), 22 (1992).CrossRefGoogle Scholar
10.Kubaschewski, O., Iron-Binary Phase Diagrams (Springer-Verlag, New York, 1982), p. 173.Google Scholar
11.Chuang, T. H., Gust, W., and Predel, B., Mater. Sci. Eng. 112A, 175 (1989).CrossRefGoogle Scholar
12.Gupta, S. and Parthiban, G., Metallkd, Z.. 73,517 (1982).Google Scholar
13.Benjamin, J. S., Met. Powder Rep. 45 (2), 122 (1990).CrossRefGoogle Scholar
14.McCormick, P. G., Wharton, v. N., and Schaafer, G. B., Physical Chemistry of Powder Metals, 20 (1989).Google Scholar
15.Liu, Z. T., Boisson, M., and Uwakweh, O. N. C., Metall. Mater. Trans. A 27A, 1 (1996).Google Scholar
16.Cheng, L., Brakman, C. M., Korevaar, B. M., and Mittemeijer, E. J., Metall. Trans. A 19A, 2415 (1988).CrossRefGoogle Scholar
17.Mittemeijer, E. J., Gent, A., and van der Shaaf, P. J., Metall. Trans. A 17A, 1441 (1986).CrossRefGoogle Scholar
18.Mittemeijer, E. J., Cheng, L., van der Schaaf, P. J., Brakman, C. M., Korevaar, and B. M., Metall. Trans. A 19A 925 (1988).CrossRefGoogle Scholar
19.Uwakweh, O. N. C., Bauer, J. P., and Genin, J. M. R., Metall. Trans. A 21A, 589 (1990).CrossRefGoogle Scholar
20.Pan, Chi-Wen, Chang, Yen-Hwei, Hsu, Chin-Chuan, and Hung, Ming-Pan, Jpn. J. Appl. Phys., Pt. 1, No. 1A, 33, 122 (1994).CrossRefGoogle Scholar
21.Bansal, C., Gao, Z. Q., Hung, I. B., and Fultz, B., J. Appl. Phys. 76 (10), 15 Nov., 5961 (1994).CrossRefGoogle Scholar
22. J.C.P.D.S. #'s 33–697, 32–478, International Center for Diffraction Data, Publishers for the Powder Diffraction File, New Square, PA.Google Scholar
23.Gu, M., Simmons, G. W., and Marder, A. R., Metall. Trans. A 21A, Feb., 273 (1990).Google Scholar
24.Cook, D. C. and Grant, R., Mössbauer Analysis of Fe–Zn Coatings, Progress Report No. 1 (Issued June 1993).Google Scholar
25.Liu, Z. and Uwakweh, O. N. C., Metall. Mater. Trans. A 27A, 1 (1996).Google Scholar
26.Brandon, J. K., Brizard, R. Y., Chieh, P. C., McMillan, R. K., and Pearson, W. B., Acta Crystallogr. B30, 1412 (1974).CrossRefGoogle Scholar
27.Giannuzzi, L. A., Howell, P. R., Pickering, H. W., and Bitler, W. R., The Proceedings of the 77th AESF Annual Technical Conference, July 9–12, Boston, MA (1990).Google Scholar