Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T14:03:54.510Z Has data issue: false hasContentIssue false

Measurement of mechanical properties of alkaline-earth metal hexaboride one-dimensional nanostructures by nanoindentation

Published online by Cambridge University Press:  27 March 2012

Xiaoxia Wu
Affiliation:
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223
Terry T. Xu*
Affiliation:
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The divalent alkaline-earth metal hexaboride MB6 (M = Ca, Sr, Ba) one-dimensional (1D) nanostructures are promising n-type thermoelectric materials for high temperature power generation. Understanding fundamental physical and mechanical properties of these new nanostructures is critical for their future applications. Current work focuses on reliable study of mechanical properties of MB6 1D nanostructures by nanoindentation. Factors affecting the measured nanostructure-on-substrate system modulus, such as the stiffness of a supporting substrate, the width and cross section of a nanostructure, the interaction between a nanostructure and a substrate, were systematically studied by both experimental investigation and numerical simulation. The intrinsic modulus of a nanostructure, extracted from the measured system modulus, was determined between two bounds set by the receding contact and the perfect bond interaction between a nanostructure and a substrate, respectively. The extracted modulus increases as the width-to-thickness ratio of a nanostructure increases from 1 to 2.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Adams, R.M.: Boron, Metallo-Boron, Compounds and Boranes (Interscience Publishers, New York, 1964).Google Scholar
2.Imai, Y., Mukaida, M., Ueda, M., and Watanabe, A.: Screening of the possible boron-based n-type thermoelectric conversion materials on the basis of the calculated densities of states of metal borides and doped beta-boron. Intermetallics 9, 721 (2001).CrossRefGoogle Scholar
3.Takeda, M., Terui, M., Takahashi, N., and Ueda, N.: Improvement of thermoelectric properties of alkaline-earth hexaborides. J. Solid State Chem. 179, 2823 (2006).CrossRefGoogle Scholar
4.Dresselhaus, M.S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S.B., and Koga, T.: Low-dimensional thermoelectric materials. Phys. Solid State 41, 679 (1999).CrossRefGoogle Scholar
5.Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P., and Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
6.Xu, T.T., Zheng, J.G., Nicholls, A.W., Stankovich, S., Piner, R.D., and Ruoff, R.S.: Single-crystal calcium hexaboride nanowires: Synthesis and characterization. Nano Lett. 4, 2051 (2004).CrossRefGoogle Scholar
7.Amin, S.S., Li, S.Y., Roth, J.R., and Xu, T.T.: Single crystalline alkaline-earth metal hexaboride one-dimensional (1D) nanostructures: Synthesis and characterization. Chem. Mater. 21, 763 (2009).CrossRefGoogle Scholar
8.Grechnev, G.E., Baranovskiy, A.E., Fil, V.D., Ignatova, T.V., Kolobov, I.G., Logosha, A.V., Shitsevalova, N.Y., Filippov, V.B., and Eriksson, O.: Electronic structure and bulk properties of MB6 and MB12 borides. Low Temp. Phys. 34, 921 (2008).CrossRefGoogle Scholar
9.Shang, S.L., Wang, Y., and Liu, Z.K.: First-principles calculations of phonon and thermodynamic properties in the boron-alkaline earth metal binary systems: B-Ca, B-Sr, and B-Ba. Phys. Rev. B 75, 024302 (2007).CrossRefGoogle Scholar
10.Kosolapova, T.Y.: Handbook of High Temperature Compounds: Properties, Production, Applications (Hemisphere, New York, 1990).Google Scholar
11.Zhang, H., Tang, J., Zhang, L., An, B., and Qin, L.C.: Atomic force microscopy measurement of the Young’s modulus and hardness of single LaB6 nanowires. Appl. Phys. Lett. 92, 173121 (2008).CrossRefGoogle Scholar
12.Wei, Y-K., Yu, J-X., Li, Z-G., Cheng, Y., and Ji, G-F.: Elastic and thermodynamic properties of CaB6 under pressure from first principles. Physica B 406, 4476 (2011).CrossRefGoogle Scholar
13.Dutta, S.K.: Hot processing, strength and fracture of calcium hexaboride. Am. Ceram. Soc. Bull. 54, 727 (1975).Google Scholar
14.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
15.Jakes, J.E., Frihart, C.R., Beecher, J.F., Moon, R.J., Resto, P.J., Melgarejo, Z.H., Suarez, O.M., Baumgart, H., Elmustafa, A.A., and Stone, D.S.: Nanoindentation near the edge. J. Mater. Res. 24, 1016 (2009).CrossRefGoogle Scholar
16.Li, H., Randall, N.X., and Vlassak, J.J.: New methods of analyzing indentation experiments on very thin films. J. Mater. Res. 25, 728 (2010).CrossRefGoogle Scholar
17.Hay, J. and Crawford, B.: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26, 727 (2011).CrossRefGoogle Scholar
18.Shu, S.Q., Yang, Y., Fu, T., Wen, C.S., and Lu, J.: Can Young’s modulus and hardness of wire structural materials be directly measured using nanoindentation. J. Mater. Res. 24, 1054 (2009).Google Scholar
19.Wu, X.X., Amin, S.S., and Xu, T.T.: Substrate effect on the Young’s modulus measurement of TiO2 nanoribbons by nanoindentation. J. Mater. Res. 25, 935 (2010).CrossRefGoogle Scholar
20.Chen, X. and Vlassak, J.J.: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, 2974 (2001).CrossRefGoogle Scholar
21.Mao, S.X., Zhao, M.H., and Wang, Z.L.: Nanoscale mechanical behavior of individual semiconducting nanobelts. Appl. Phys. Lett. 83, 993 (2003).CrossRefGoogle Scholar
22.Li, X.D., Wang, X.N., Xiong, Q.H., and Eklund, P.C.: Mechanical properties of ZnS nanobelts. Nano Lett. 5, 1982 (2005).CrossRefGoogle ScholarPubMed
23.Feng, G., Nix, W.D., Yoon, Y., and Lee, C.J.: A study of the mechanical properties of nanowires using nanoindentation. J. Appl. Phys. 99, 074304 (2006).CrossRefGoogle Scholar
24.Yang, F.Q., Jiang, C.B., Du, W.W., Zhang, Z.Q., Li, S.X., and Mao, S.X.: Nanomechanical characterization of ZnS nanobelts. Nanotechnology 16, 1073 (2005).CrossRefGoogle Scholar
25.Yu, H.Y., Sanday, S.C., and Rath, B.B.: The effect of substrate on the elastic properties of films determined by the indentation test—axisymmetrical Boussinesq problem. J. Mech. Phys. Solids 38, 745 (1990).CrossRefGoogle Scholar
26.Bei, H., George, E.P., Hay, J.L., and Pharr, G.M.: Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95, 045501 (2005).CrossRefGoogle ScholarPubMed
27.Chen, S.H., Liu, L., and Wang, T.C.: Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol. 191, 25 (2005).CrossRefGoogle Scholar
28.Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids (Springer, Berlin, 2000).CrossRefGoogle Scholar
29.Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., and Yan, Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006).CrossRefGoogle ScholarPubMed
30.Ni, H. and Li, X.D.: Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 17, 3591 (2006).CrossRefGoogle ScholarPubMed
31.Lucas, M., Mai, W.J., Yang, R.S., Wang, Z.L., and Riedo, E.: Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Lett. 7, 1314 (2007).CrossRefGoogle ScholarPubMed
32.Bai, X.D., Gao, P.X., Wang, Z.L., and Wang, E.G.: Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 82, 4806 (2003).CrossRefGoogle Scholar
33.Mai, W.J. and Wang, Z.L.: Quantifying the elastic deformation behavior of bridged nanobelts. Appl. Phys. Lett. 89, 073112 (2006).CrossRefGoogle Scholar
34.Zheng, H., Zheng, X.J., Wang, J.S., Yu, G.C., Li, Y., Song, S.T., and Han, C.: Evaluation the effect of aspect ratio for Young’s modulus of nanobelt using finite element method. Mater. Des. 32, 1407 (2011).CrossRefGoogle Scholar
35.Futamoto, M., Aita, T., and Kawabe, U.: Microhardness of hexaboride single-crystals. Mater. Res. Bull. 14, 1329 (1979).CrossRefGoogle Scholar
36.Xin, S., Liu, S., Wang, N., Han, X., Wang, L., Xu, B., Tian, Y., Liu, Z., He, J., and Yu, D.: Formation and properties of SrB6 single crystals synthesized under high pressure and temperature. J. Alloys Compd. 509, 7927 (2011).CrossRefGoogle Scholar
37.Kim, Y.J., Son, K., Choi, I.C., Choi, I.S., Park, W.I., and Jang, J.I.: Exploring nanomechanical behavior of silicon nanowires: AFM bending versus nanoindentation. Adv. Funct. Mater. 21, 279 (2011).CrossRefGoogle Scholar
38.Nagao, S., Fujikane, M., Tymiak, N., and Nowak, R.: Achieving consistency of Young’s modulus determination from nanoscale deformation of low-k films. J. Appl. Phys. 105, 106104 (2009).CrossRefGoogle Scholar