Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T00:04:23.734Z Has data issue: false hasContentIssue false

Martensitic transformation in melt-spun Heusler Ni–Mn–Sn–Co ribbons

Published online by Cambridge University Press:  27 March 2014

Hongxing Zheng*
Affiliation:
Laboratory for Microstructures, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Wu Wang
Affiliation:
Laboratory for Microstructures, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Jinke Yu
Affiliation:
Laboratory for Microstructures, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Qijie Zhai
Affiliation:
Shanghai Key Laboratory of Modern Metallurgy & Materials Processing, Shanghai University, Shanghai 200072, China
Zhiping Luo
Affiliation:
Department of Chemistry and Physics and Southeastern North Carolina Regional Microanalytical and Imaging Consortium, Fayetteville State University, Fayetteville, North Carolina 28301
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Heusler Ni–Mn–(Ga, In, Sn, Sb) materials can provide large magnetic-field-induced strain, giant magnetocaloric and magnetoresistance effects based on their first-order solid-state martensitic transformation. In the present work, effects of Co doping on martensitic transformation behavior in melt-spun Ni–Mn–Sn ribbons were studied by x-ray diffraction, scanning/transmission electron microscopy, and thermal analysis. Experimental results showed that both martensitic transition and austenite Curie temperatures increased linearly with Co addition to Ni49Mn39Sn12; and meanwhile, crystal structures of the martensite evolved from four-layered orthorhombic (4O) to five-layered orthorhombic (10M), and then seven-layered monoclinic (14M). The compositional dependence of the martensitic transition temperatures was well correlated with changes of valence electron concentration (e/a) and unit-cell volume of high-temperature austenite. It was proposed that both increase of valence electron concentration and shrinkage of austenite unit-cell volume with Co addition are favorable to the occurrence of martensitic transformation. In addition, the Curie temperature of austenite increases with Co addition, which was ascribed to the enhancement of ferromagnetic exchange interaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, LI., Planes, A., Suard, E., and Ouladdiaf, B.: Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys. Rev. B 75, 104414 (2007).CrossRefGoogle Scholar
Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, LI., and Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 4, 450 (2005).CrossRefGoogle ScholarPubMed
Koyama, K., Okada, H., Watanabe, K., Kanomata, T., Kainuma, R., Ito, W., Oikawa, K., and Ishida, K.: Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14 in high magnetic fields. Appl. Phys. Lett. 89, 182510 (2006).CrossRefGoogle Scholar
Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Gu, B.X., and Du, Y.W.: Low-field inverse magnetocaloric effect in Ni50-xMn39+xSn11 Heusler alloys. Appl. Phys. Lett. 90, 042507 (2007).CrossRefGoogle Scholar
Sharma, V.K., Chattopadhyay, M.K., Kumar, R., Ganguli, T., Tiwari, P., and Roy, S.B.: Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. J. Phys.: Condens. Matter 19, 496207 (2007).Google Scholar
Chatterje, S., Giri, S., Majumdar, S., and De, S.K.: Giant magnetoresistance and large inverse magnetocaloric effect in Ni2Mn1.36Sn0.64 alloy. J. Phys. D: Appl. Phys. 42, 065001 (2009).CrossRefGoogle Scholar
Zheng, H.X., Wu, D.Z., Xue, S.C., Frenzel, J., Eggeler, G., and Zhai, Q.J.: Martensitic transformation in rapidly solidified Ni49Mn39Sn12 ribbons. Acta Mater. 59(14), 5962 (2011).CrossRefGoogle Scholar
Krenke, T., Duman, E., Acet, M., Moya, X., Mañosa, LI., and Planes, A.: Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J. Appl. Phys. 102, 033903 (2007).CrossRefGoogle Scholar
Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Zhang, J.R., Gu, B.X., and Du, Y.W.: Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni–Mn–Sn alloys. Mater. Sci. Eng. B 157, 40 (2009).CrossRefGoogle Scholar
Gao, B., Hu, F.X., Shen, J., Wang, J., Sun, J.R., and Shen, B.G.: Field-induced structural transition and the related magnetic entropy change in Ni43Mn43Co3Sn11 alloy. J. Magn. Magn. Mater. 321, 2571 (2009).CrossRefGoogle Scholar
Fukushima, K., Sano, K., Kanomata, T., Nishihara, H., Furutani, Y., Shishido, T., Ito, W., Umetsu, R.Y., Kainuma, R., Oikawa, K., and Ishida, K.: Phase diagram of Fe-substituted Ni–Mn–Sn shape memory alloys. Scr. Mater. 61, 813 (2009).CrossRefGoogle Scholar
Liu, H.S., Zhang, C.L., Han, Z.D., Xuan, H.C., Wang, D.H., and Du, Y.W.: The effect of Co doping on the magnetic entropy changes in Ni44-xCoxMn45Sn11 alloys. J. Alloys Compd. 467, 27 (2009).CrossRefGoogle Scholar
Wang, D.H., Zhang, C.L., Xuan, H.C., Han, Z.D., Zhang, J.R., Tang, S.L., Gu, B.X., and Du, Y.W.: The study of low-field positive and negative magnetic entropy changes in Ni43Mn46-xCuxSn11 alloys. J. Appl. Phys. 102, 013909 (2007).CrossRefGoogle Scholar
Cong, D.Y., Roth, S., and Schultz, L.: Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys. Acta Mater. 60, 5335 (2012).CrossRefGoogle Scholar
Chen, F., Tong, Y.X., Huang, Y.J., Tian, B., Li, L., and Zheng, Y.F.: Suppression of γ phase in Ni38Co12Mn41Sn9 alloy by melt spinning and its effect on martensitic transformation and magnetic properties. Intermetallics 36, 81 (2013).CrossRefGoogle Scholar
Santos, J.D., Sanchez, T., Alvarez, P., Sanchez, M.L., Sánchez Llamazares, J.L., Hernando, B., Escoda, LI., Suñol, J.J., and Varga, R.: Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. J. Appl. Phys. 103, 07B326 (2008).CrossRefGoogle Scholar
Hernando, B., Sánchez Llamazares, J.L., Santos, J.D., Escoda, LI., Suñol, J.J., Varga, R., Baldomir, D., and Serantes, D.: Thermal and magnetic field-induced martensite-austenite transition in Ni50.3Mn35.3Sn14.4 ribbons. Appl. Phys. Lett. 92, 042504 (2008).CrossRefGoogle Scholar
Babita, I., Patil, S.I., and Ram, S.: First order structural transformation and inverse magnetocaloric effect in melt-spun Ni–Mn–Sn ribbons. J. Phys. D: Appl. Phys. 43, 205002 (2010).CrossRefGoogle Scholar
Wu, D.Z., Xue, S.C., Frenzel, J., Eggeler, G., Zhai, Q.J., and Zheng, H.X.: Atomic ordering effect in Ni50Mn37Sn13 magnetocaloric ribbons. Mater. Sci. Eng. A 534, 568 (2012).CrossRefGoogle Scholar
Smit, J.: Magnetism in Hume-Rothery alloys. J. Phys. F: Met. Phys. 8, 2139 (1978).CrossRefGoogle Scholar
Zayak, A.T., Adeagbo, W.A., Entel, P., and Rabe, K.M.: e/a dependence of the lattice instability of cubic Heusler alloys from first principles. Appl. Phys. Lett. 88, 111903 (2006).CrossRefGoogle Scholar
Krenke, T., Moya, X., Aksoy, S., Acet, M., Entel, P., Mañosa, LI., Planes, A., Elerman, Y., Yücel, A., and Wassermann, E.F.: Electronic aspects of the martensitic transition in Ni–Mn based Heusler alloys. J. Magn. Magn. Mater. 310, 2788 (2007).CrossRefGoogle Scholar
Kokorin, V.V., Osipenko, I.A., and Shirina, T.V.: Phase transitions in alloys Ni2MnGaxIn1-x . Phys. Met. Metallogr. 67, 173 (1989).Google Scholar
Chen, X.Q., Yang, F.J., Lu, X., and Qin, Z.X.: The way composition affects martensitic transformation temperatures of Ni–Mn–Ga Heusler alloys. Phys. Status Solidi B 244(3), 1047 (2007).CrossRefGoogle Scholar
Dogan, E., Karaman, I., Singh, N., Chivukula, A., Thawabi, H.S., and Arroyave, R.: The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater. 60, 3545 (2012).CrossRefGoogle Scholar
Williams, A.R., Moruzzi, V.L., Malozemoff, A.P., and Terakura, K.: Generalized Slater-Pauling curve for transition-metal magnets. IEEE Trans. Magn. 19(5), 1983 (1983).CrossRefGoogle Scholar
Zheng, H.X., Wang, W., Xue, S.C., Zhai, Q.J., Frenzel, J., and Luo, Z.P.: Composition-dependent crystal structure and martensitic transformation in Heusler Ni–Mn–Sn alloys. Acta Mater. 61, 4648 (2013).CrossRefGoogle Scholar
Wang, W., Yu, J.K., Zhai, Q.J., Luo, Z.P., and Zheng, H.X.: Co-doping effect on the martensitic transformation and magnetic properties of Ni49Mn39Sn12 alloy. J. Magn. Magn. Mater. 346, 103 (2013).CrossRefGoogle Scholar
Fecher, G.H., Kandpal, H.C., Wurmehl, S., Felser, C., and Schönhense, G.J.: Slater-Pauling rule and Curie temperature of Co2-based Heusler compounds. J. Appl. Phys. 99, 08J106 (2006).CrossRefGoogle Scholar
Sato, M., Okazaki, T., Furuya, Y., and Wuttig, M.: Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Mater. Trans. 44(3), 372 (2003).CrossRefGoogle Scholar
Liu, J., Xia, M.X., Huang, Y.L., Zheng, H.X., and Li, J.G.: Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J. Alloys Compd. 417(1–2), 96 (2006).CrossRefGoogle Scholar
Şaşıoğlu, E, Sandratskii, L.M., and Bruno, P.: First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2MnX (X=Ga,In,Sn,Sb). Phys. Rev. B 70, 024427 (2004).CrossRefGoogle Scholar
Ma, L., Zhang, H.W., Yu, S.Y., Zhu, Z.Y., Chen, J.L., Wu, G.H., Liu, H.Y., Qu, J.P., and Li, Y.X.: Magnetic-field-induced martensitic transformation in MnNiGa:Co alloys. Appl. Phys. Lett. 92, 032509 (2008).CrossRefGoogle Scholar
Stager, C.V. and Campbell, C.C.M.: Antiferromagnetic order in the Heusler alloy, Ni2Mn(MnxSn1-x). Can. J. Phys. 56, 674 (1978).CrossRefGoogle Scholar
Kurtulus, Y., Dronskowski, Y.R., Samolyuk, G.D., and Antropov, V.P.: Electronic structure and magnetic exchange coupling in ferromagnetic full Heusler alloys. Phys. Rev. B 72, 014425 (2005).CrossRefGoogle Scholar
Han, Z.D., Chen, J., Qian, B., Zhang, P., Jiang, X.F., Wang, D.H., and Du, Y.W.: Phase diagram and magnetocaloric effect in Mn2Ni1.64-xCoxSn0.36 alloys. Scr. Mater. 66, 121 (2012).CrossRefGoogle Scholar