Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T12:29:30.078Z Has data issue: false hasContentIssue false

Magnetoresistive sensors and magnetic nanoparticles for biotechnology

Published online by Cambridge University Press:  01 December 2005

Guenter Reiss*
Affiliation:
Department of Physics, University of Bielefeld, 33501 Bielefeld, Germany
Hubert Brueckl
Affiliation:
Department of Physics, University of Bielefeld, 33501 Bielefeld, Germany
Andreas Huetten
Affiliation:
Department of Physics, University of Bielefeld, 33501 Bielefeld, Germany
Joerg Schotter
Affiliation:
Department of Physics, University of Bielefeld, 33501 Bielefeld, Germany
Monika Brzeska
Affiliation:
Department of Physics, University of Bielefeld, 33501 Bielefeld, Germany
Michael Panhorst
Affiliation:
Department of Physics, University of Bielefeld, 33501 Bielefeld, Germany
Daniela Sudfeld
Affiliation:
Department of Physics, University of Bielefeld, 33501 Bielefeld, Germany
Anke Becker
Affiliation:
Department of Biology, University of Bielefeld, 33501 Bielefeld, Germany
Paul B. Kamp
Affiliation:
Department of Biology, University of Bielefeld, 33501 Bielefeld, Germany
Alfred Puehler
Affiliation:
Department of Biology, University of Bielefeld, 33501 Bielefeld, Germany
Klaus Wojczykowski
Affiliation:
Department of Chemistry, University of Bielefeld, 33501 Bielefeld, Germany
Peter Jutzi
Affiliation:
Department of Chemistry, University of Bielefeld, 33501 Bielefeld, Germany
*
a)Address all correspondence to this author. e-mail: [email protected] This paper was selected as the Outstanding Meeting Paper for the 2004 MRS Fall Meeting Symposium I Proceedings, Vol. 853E.
Get access

Abstract

Magnetoresistive biosensors use a new detection method for molecular recognition reactions based on two recently developed techniques and devices: Magnetic markers and XMR sensors, where XMR means either giant magnetoresistance (GMR) or tunneling magnetoresistance (TMR). The markers are specifically attached to the target molecules, and their magnetic stray field is picked up by an embedded magnetoresistive sensor as a change of the electrical resistance. Compared to established, e.g., fluorescent, detection methods, magnetic biosensors have a number of advantages, including low molecular detection limits, flexibility, and the direct availability of an electronic signal suitable for further automated analysis. This makes them a promising choice for the detection units of future widespread and easy-to-use lab-on-a-chip systems or biochips. In this article, we discuss recent advances in this field and compare possible approaches toward single molecule detection.

Type
Outstanding Meeting Paper—Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ruderman, M.A. and Kittel, C.: Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99 (1954).CrossRefGoogle Scholar
2.Kasuya, T.: A theory of metallic ferro and antiferromagnetism on Zerner’s model. Prog. Theor. Phys. 16, 45 (1956).CrossRefGoogle Scholar
3.Yosida, K.: Magnetic properties of Cu–Mn alloys. Phys. Rev. Lett. 106, 893 (1957).Google Scholar
4.Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B. and Sowers, H.: Layered magmnetic structures—Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442 (1986).CrossRefGoogle Scholar
5.Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Eitenne, P., Creuzet, G., Friedrich, A. and Chazelas, J.: Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).CrossRefGoogle Scholar
6.Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54, 225 (1975).CrossRefGoogle Scholar
7.Moodera, J.S., Kinder, L.R., Wong, T.M. and Meservey, R.: Large magnetoresistance at room-temperature in ferromagnetic thin-film tunnel-junctions. Phys. Rev. Lett. 74, 3273 (1995).CrossRefGoogle ScholarPubMed
8.Parkin, S.S.P.: The magic of magnetic multilayers. IBM J. Res. & Dev. 42(1), 3 (1998).CrossRefGoogle Scholar
9. See for example the website of the Robert Bosch GmbH, Stuttgart, Germany: http://rb-k.bosch.de/de/start/safety.html (Sept. 2005).Google Scholar
10.Prinz, G.A.: Magnetoelectronics. J. Magn. Magn. Mater. 200, 57 (1999).CrossRefGoogle Scholar
11.Miller, M.M., Prinz, G.A., Lubitz, P., Hoines, L., Krebs, J.J., Cheng, S.F. and Parsons, F.G.: Novel absolute linear displacement sensor utilizing giant magnetoresistance elements. J. Appl. Phys. 81, 4284 (1997).CrossRefGoogle Scholar
13.Baselt, D.R., Lee, G.U., Natesan, M., Metzger, S.W., Sheehan, P.E. and Colton, R.J.: A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731 (1998).CrossRefGoogle ScholarPubMed
14.Edelstein, R.L., Tamanaha, C.R., Sheehan, P.E., Miller, M.M., Baselt, D.R., Whitman, L.J. and Colton, R.J.: The BARC biosensor applied to the detection of biological warfare agents. Biosens. Bioelectron. 14, 805 (2000).CrossRefGoogle Scholar
15.Vettese-Dadey, M.: Going their separate ways: A profile of products for cell separation. The Scientist 13, 21 (1999).Google Scholar
16.Larsson, K., Kriz, K. and Kriz, D.: Magnetic transducers in biosensors and bioassays. Analusis. 27, 617 (1999).CrossRefGoogle Scholar
17.Murray, C.B., Sun, S., Gaschler, W., Doyle, H., Betley, T.A. and Kagan, C.R.: Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. & Dev. 45, 47 (2001).CrossRefGoogle Scholar
18.Puntes, V.F., Krishnan, K.M. and Alivisatos, A.P.: Colloidal nanocrystal shape and size control: The case of cobalt. Science 291, 2115 (2001).CrossRefGoogle ScholarPubMed
19.Dinega, D.P. and Bawendi, M.G.: A solution-phase chemical approach to a new crystal structure of cobalt. Angew. Chem. 111, 1906 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
20.Sun, S., Murray, C.B. and Doyle, H.: Controlled assembly of monodisperse cobalt based nanocrystals, in Advanced Hard and Soft Magnetic Materials, edited by Coey, M., Lewis, L.H., Ma, B-M., Schrefl, T., Schultz, L., Fidler, J., Harris, V.G., Hasegawa, R., Inoue, A., and McHenry, M. (Mater. Res. Soc. Symp. Proc. 577, Warrendale, PA, 1999), p. 385.Google Scholar
21.Sun, S., Murray, C.B., Weller, D., Folks, L. and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).CrossRefGoogle ScholarPubMed
22.Brzeska, M., Panhorst, M., Kamp, P.B., Schotter, J., Reiss, G., Pühler, A., Becker, A. and Brückl, H.: Detection and manipulation of biomolecules by magnetic carriers. J. Biotechnol. 112, 25 (2004).CrossRefGoogle ScholarPubMed
23. TeleChem International, Inc.: SuperClean substrate, http://www.arrayit.com (accessed September 2005).Google Scholar
24.Voet, D. and Voet, J.G.: Biochemie (VCH Verlagsgesellschaft GmbH, Weinheim, Germany, 1994).Google Scholar
25.Schotter, J., Kamp, P.B., Becker, A., Pühler, A., Reiss, G. and Brückl, H.: Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron. 19, 1149 (2004).CrossRefGoogle ScholarPubMed
26. Dynal Biotech: http://www.dynal.no.Google Scholar
27.Ali-Zade, R.A.: Structure and magnetic properties of polymer microspheres filled with magnetite nanoparticles. Inorg. Mater. 40, 509 (2004).CrossRefGoogle Scholar
28.Scientific and Clinical Applications of Magnetic Carriers, edited by Häfeli, U., Schütt, W., and Teller, J. (Plenum, New York, 1997).CrossRefGoogle Scholar
29.Blaaderen, A. v., van Geest, J. and Vrij, A.: Monodisperse colloidal silica spheres from tetraalkoxysilanes—Particle formation and growth-mechanism. J. Colloid Interf. Sci. 154, 481 (1992).CrossRefGoogle Scholar
30.Murray, C.B., Kagan, C.R. and Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
31.Hütten, A., Sudfeld, D., Ennen, I., Reiss, G., Hachmann, W., Heinzmann, U., Wojczykowski, K., Jutzi, P., Saikaly, W. and Thomas, G.: New magnetic nanoparticles for biotechnology. J. Biotechnol. 112, 91 (2004).CrossRefGoogle ScholarPubMed
32.de Vries, A.: High force magnetic tweezers for molecular manipulation inside living cells. Ph.D. Thesis, University of Twente, Enschede, The Netherlands (2004).Google Scholar