Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T22:03:47.506Z Has data issue: false hasContentIssue false

Magnetic structure of TbBaCo2O5.4 perovskite

Published online by Cambridge University Press:  31 January 2011

D. D. Khalyavin
Affiliation:
Institute of Solid State and Semiconductor Physics, National Academy of Sciences of Belarus, P. Brovki str. 17, 220072 Minsk, Belarus
I. O. Troyanchuk
Affiliation:
Institute of Solid State and Semiconductor Physics, National Academy of Sciences of Belarus, P. Brovki str. 17, 220072 Minsk, Belarus
N. V. Kasper
Affiliation:
Institute of Solid State and Semiconductor Physics, National Academy of Sciences of Belarus, P. Brovki str. 17, 220072 Minsk, Belarus
Q. Huang
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899–8562, and Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
J. W. Lynn
Affiliation:
NISTCenter for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899–8562
H. Szymczak
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02–668 Warsaw, Poland
Get access

Abstract

In accordance with magnetization studies, the fast-cooled TbBaCo2O5.4 is characterized by spontaneous magnetization around 0.18 μB per cobalt ion, which develops below TN = 245 K. The neutron diffraction study of this compound revealed that magnetic moments of Co3+; ions adopting intermediate spine state are ordered antiferromagnetically. Both magnetization and neutron diffraction study showed that there is a spin reorientation process in the wide temperature range. The crystal and magnetic structures are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Caignaert, V., Maignan, A., and Raveau, B., Solid State Commun. 95, 357(1995).CrossRefGoogle Scholar
2Tomioka, Y., Asamitsu, A., Moritomo, Y., and Tokura, Y., Phys. Rev. Lett. 74, 5108(1995).CrossRefGoogle Scholar
3Lees, M.R., Barrat, J., Balakrishnan, G., Paul, D. Mck, and Yethiraj, M., Phys. Rev. B 52, R14303(1995).CrossRefGoogle Scholar
4Itoh, M., Natori, I., Kubota, S., and Motoya, K., J. Phys. Soc. Jpn. 63, 1486(1994).CrossRefGoogle Scholar
5Mineshige, A., Inaba, M., Yao, T., Ogumi, Z., Kikuchi, K., and Kawase, M., J. Solid State Chem. 121, 423(1996).CrossRefGoogle Scholar
6Mahendiran, R. and Raychaudhuri, A.K., Phys. Rev. B 54, 16044(1996).Google Scholar
7Martin, C., Maignan, A., Pelloquin, D., Nguyen, N., and Raveau, B., Appl. Phys. Lett. 71, 1421(1997).CrossRefGoogle Scholar
8Troyanchuk, I.O., Kasper, N.V., Khalyavin, D.D., Szymczak, H., Szymczak, R., and Baran, M., Phys. Rev. Lett. 80, 3380(1998).Google Scholar
9Troyanchuk, I.O., Kasper, N.V., Khalyavin, D.D., Szymczak, H., Szymczak, R., and Baran, M., Phys. Rev. B 58, 2418(1998).Google Scholar
10Maignan, A., Martin, C., Pelloquin, D., Nguyen, N., and Raveau, B., J. Solid State Chem. 142, 247(1999).CrossRefGoogle Scholar
11Korotin, M.A., Ezhov, S.Yu., Solovyev, I.V., Anisimov, V.I., Khomskii, D.I., and Sawatzky, G.A., Phys. Rev. B 54, 5309(1996).CrossRefGoogle Scholar
12Troyanchuk, I.O., Kasper, N.V., Khalyavin, D.D., Chobot, A.N., and Szymczak, H., J. Phys. Cond. Mater. 10, 6381(1998).Google Scholar
13Kim, W.S., Chi, E.O., Hur, N.H., Oh, S-J., and Ri, H-C., Sol. State Comm. 116, 609(2000).CrossRefGoogle Scholar
14Larson, A.C., and Dreele, R.B. Von, General Structure Analysis System, Report No. LAUR086-748, LANL (Los Alamos National Laboratory, Los Alamos, NM, 1990).Google Scholar
15Er-Rakho, L., Michel, C., Laccore, Ph., and Raveau, B., J. Solid State Chem. 73, 531(1988).Google Scholar
16Barbey, L., Nguyen, N., Caignaert, V., Hervieu, M., and Raveau, B., Mater. Res. Bull. 27, 295(1992).CrossRefGoogle Scholar
17Moritomo, Y., Akimoto, T., Takeo, M., Machida, A., Nishibori, E., Takata, M., Sakata, M., Ohoyama, K., and Nakamura, A., Phys. Rev. B 61, R13325(2000).CrossRefGoogle Scholar
18Barbey, L., Nguyen, N., Caignaert, V., Studer, F., and Raveau, B., J. Solid State Chem. 112, 148(1994).Google Scholar
19Huang, Q., Karen, P., Karen, V.L., Kjekshus, A., Lynn, J.W., Mighell, A.D., Sora, I. Natali, Rosov, N., and Santoro, A., J. Solid State Chem. 108, 80(1994).CrossRefGoogle Scholar
20Suard, E., Fauth, F., Caignaert, V., Mirebeau, I., and Baldinozzi, G., Phys. Rev. B 61, R11971(2000).Google Scholar
21Vogt, T., Woodward, P.M., Karen, P., Hunter, B.A., Henning, P., and Moodenbaugh, R., Phys. Rev. Lett. 84, 2969(2000).CrossRefGoogle Scholar
22Kwon, S.K., Park, J.H., and Min, B.I., Phys. Rev. B 62, R14637(2000).CrossRefGoogle Scholar
23Senaris-Rodriguez, M.A. and Goodenough, J.B., J. Sol. State Chem. 118, 323(1995).Google Scholar
24Gorodetsky, G., Sharon, B., and Shtrickman, S., J. Appl. Phys. 39, 1371(1968).CrossRefGoogle Scholar