Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T12:39:52.448Z Has data issue: false hasContentIssue false

Magnetic, structural, electronic, and optical investigations of Ti1−xMnxO2 films

Published online by Cambridge University Press:  31 July 2012

Sudesh Sharma
Affiliation:
Department of Physics, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
Sujeet Chaudhary*
Affiliation:
Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
Subhash Chand Kashyap
Affiliation:
Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Observation of room temperature ferromagnetism (RTFM) is reported in polycrystalline thin films of Ti1−xMnxO2 (x = 0.10 and 0.15) synthesized by spray pyrolysis technique on fused quartz substrates. Our experimental results clearly suggest partial incorporation of manganese (Mn) in titanium dioxide (TiO2) lattice up to certain extent and rest of the Mn ions are consumed to form secondary Mn-related phase such as manganese oxide (Mn3O4). The observed weak ferromagnetic ordering at room temperature in the films is established to be due to incorporation of Mn in TiO2matrix rather than the presence of other secondary phases since none of the Mn or Ti/Mn oxide phase is ferromagnetic at room temperature. Bound magnetic polaron model is invoked to explain the observed ferromagnetism in these highly resistive films.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S., and Iye, Y.: (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363 (1996).CrossRefGoogle Scholar
Prinz, G.A.: Magnetoelectronics. Science 282, 1660 (1998).CrossRefGoogle ScholarPubMed
Ohno, H.: Making nonmagnetic semiconductor ferromagnetic. Science 281, 951 (1998).CrossRefGoogle Scholar
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Molnar, S.V., Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M.: Spintronic: A spin-based electronics vision for the future. Science 294, 1488 (2001).Google Scholar
Dietl, T., Ohno, H., Matsukur, F., Cibert, J., and Ferrad, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000).Google Scholar
Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001).Google Scholar
Bhattacharyya, S., Pucci, A., Zitoun, D., and Gedanken, A: One-pot fabrication and magnetic studies of Mn-doped TiO2 nanocrystals with an encapsulating carbon layer. Nanotechnology 19, 495711 (2008).CrossRefGoogle ScholarPubMed
Tian, Z.M., Yuan, S.L, He, J.H, Wang, Y.Q., Li, P., Xie, H.Y., Liu, L., and Yin, S.Y.: Effects of sintering temperature and atmosphere on magnetism in Mn-doped TiO2 bulk samples. Solid-state Commun. 142, 545 (2007).Google Scholar
Pinto, J.V., Cruz, M.M., da Silva, R.C., Alves, E., and Godinhoa, M.: Magnetic properties of TiO2 rutile implanted with Ni and Co. J. Magn. Magn. Mater. 294, e73 (2005).Google Scholar
Kim, J-Y., Park, J-H., Park, B-G., Noh, H-J., Oh, S-J., Yang, J.S., Kim, D-H., Bu, S.D., Noh, T-W., Lin, H-J., Hsieh, H-H., and Chen, C.T.: Ferromagnetism induced by clustered Co in Co-doped TiO2 thin films. Phys. Rev. Lett. 90, 017401 (2003).Google Scholar
Griffin, K.A., Pakhomov, A.B., Wang, C.M., Heald, S.M., and Krishnan, K.M.: Intrinsic ferromagnetism insulating cobalt-doped anatase TiO2. Phys. Rev. Lett. 94, 157204 (2005).Google Scholar
Cho, J.H., Hwang, T.J., Joh, Y.G., Kim, E.C., Kim, D.H., Lee, K.J., Park, H.W., Ri, H-C., Kim, J.P., and Cho, C.R.: Room-temperature ferromagnetism in highly resistive Ni-doped TiO2. Appl. Phys. Lett. 88, 092505 (2006).Google Scholar
Li, X., Wu, S., Hu, P., Xing, X., Liu, Y., Yu, Y., Yang, M., Lu, J., Li, S., and Liu, W.: Structures and magnetic properties of p-type Mn:TiO2 dilute magnetic semiconductor thin films. J. Appl. Phys. 106, 043913 (2009).Google Scholar
Janish, R., Gopal, P., and Spaldin, N.A.: Transition metal-doped TiO2 and ZnO-present status of the field. J. Phys. Condens. Matter 17, R657 (2005).Google Scholar
Kaspar, T.C., Heald, S.M., Wang, C.M., Bryan, J.D., Droubay, T., Shutthanandan, V., Thevuthasan, S., McCready, D.E., Kellock, A.J., Gamelin, D.R., and Chambers, S.A.: Negligible magnetism in excellent structural quality CrxTi1-xO2 anatase: Contrast with high T C ferromagnetism in structurally defective CrxTi1-xO2. Phys. Rev. Lett. 95, 217203 (2005).Google Scholar
Kim, K.J., Park, Y.R., Lee, J.H., Choia, S-L., Lee, H.J., Kim, C.S., and Park, J.Y.: Room temperature ferromagnetic properties in Mn-doped rutile TiO2 thin films. J. Magn. Magn. Mater. 316, e215 (2007).CrossRefGoogle Scholar
Hong, N.H., Sakai, J., Ruyter, A., and Brize, V.: Does Mn-doping play any key role in tailoring the ferromagnetic ordering of TiO2 thin films? Appl. Phys. Lett. 89, 252504 (2006).Google Scholar
Coey, J.M.D., Venkateshan, M., and Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005).CrossRefGoogle ScholarPubMed
Lide, D.R.: CRC Handbook of Chemistry and Physics, 87th ed. (Taylor and Francis, London, 2005).Google Scholar
Sharma, S., Chaudhary, S., Kashyap, S.C., and Sharma, S.K.: Room temperature ferromagnetism in Mn-doped TiO2 thin films: Electronic structure and Raman investigations. J. Appl. Phys. 109, 083905 (2011).Google Scholar
Wang, Z., Tang, J., Chen, Y., Spinu, L., Zhou, W., and Tung, L.D.: Room-temperature ferromagnetism in Mn-doped reduced rutile titanium dioxide thin films. J. Appl. Phys. 95, 7384 (2004).Google Scholar
Ding, P., Liu, F.M., Yang, X.A., and Li, J.Q.: Preparation, structure and ferromagnetic properties of the nanocrystalline Ti1-xMnxO2 thin films grown by redio frequency magnetron co-sputtering. Chinese Phsyics B 17, 721 (2008).Google Scholar
Tian, Z.M., Yuan, S.L., Wang, Y.Q., He, J.H., Yin, S.Y., Liu, K.L., Yuan, S.J., and Liu, L.: Magnetic studies on Mn-doped TiO2 bulk samples, J. Phys. D: Appl. Phys. 41, 055006 (2008).Google Scholar
Sellers, M.C.K. and Seebauer, E.G.: Structural and magnetic properties of Mn-doped anatase TiO2 films synthesized by atomic layer deposition. Appl. Phys. A 104, 583 (2011).CrossRefGoogle Scholar
Ogale, S.B.: Thin Film and Heterostructures for Oxide Electronics, (Springer Science+Business Media, Inc., New York, NY, 2005), p. 245.CrossRefGoogle Scholar
Kaminski, A. and Sarma, S.D.: Polaron percolation in dilute magnetic semiconductors, Phys. Rev. Lett. 88, 247202 (2002).Google Scholar