Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T00:14:33.249Z Has data issue: false hasContentIssue false

Magnetic properties and thermal stability of polyvinylidene fluoride—Fe2O3 nanocomposites

Published online by Cambridge University Press:  03 January 2020

Victor Kuncser
Affiliation:
National Institute of Materials Physics, Atomistilor Str. 405 A, Bucharest-Magurele 077125, Romania
Dorina Chipara
Affiliation:
Department of Physics and Astronomy, The University of Texas, Rio Grande Valley, 1201 W. University Drive, Edinburg, Texas 78539
Karen S. Martirosyan
Affiliation:
Department of Physics and Astronomy, The University of Texas, Rio Grande Valley, 1201 W. University Drive, Edinburg, Texas 78539
Gabriel Alexandru Schinteie
Affiliation:
National Institute of Materials Physics, Atomistilor Str. 405 A, Bucharest-Magurele 077125, Romania
Elamin Ibrahim
Affiliation:
Department of Chemistry, The University of Texas, Rio Grande Valley, 1201 W. University Drive, Edinburg, Texas 78539
Mircea Chipara*
Affiliation:
Department of Physics and Astronomy, The University of Texas, Rio Grande Valley, 1201 W. University Drive, Edinburg, Texas 78539
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocomposites of polyvinylidene fluoride loaded with various amounts of γ-Fe2O nanoparticles, with an average size ranging between 20 and 40 nm, have been obtained by melt mixing and investigated using various experimental techniques [Superconducting Quantum Interference Device, Mössbauer, and Thermogravimetric Analysis]. Magnetic and Mössbauer measurements confirmed the presence of maghemite and a trace of a paramagnetic iron compound. Magnetic data are consistent with a blocking temperature close to room temperature (RT), showing a decrease in the coercive field as the temperature is increased. A weak exchange bias was noticed in all nanocomposites investigated at all temperatures and tentatively ascribed to surface spin disorder. The temperature dependence of the coercive field obeys the Kneller law. The nanocomposites exhibit superparamagnetic behavior near RT. Most magnetic measurements have been performed below the blocking temperature, revealing thus a complex behavior. The dependence of the mass loss derivative versus temperature, as obtained by thermogravimetric analysis, exhibits a single peak due to the thermal degradation of the polymeric matrix. A weak increase in the thermal stability of the polymeric matrix upon loading with maghemite is reported.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Furukawa, T.: Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions 18, 143 (1989).CrossRefGoogle Scholar
Baskaran, S., Ramachandran, N., He, X., Thiruvannamalai, S., Lee, H.J., Heo, H., Chen, Q., and Fu, J.Y.: Giant flexoelectricity in polyvinylidene fluoride films. Phys. Lett. A 375, 2082 (2011).CrossRefGoogle Scholar
Poulsen, M., Ducharme, S., Poulsen, M., and Ducharme, S.: Why ferroelectric polyvinylidene fluoride is special. IEEE Trans. Dielectr. Electr. Insul. 17, 1028 (2010).CrossRefGoogle Scholar
He, F., Fan, J., and Chan, L.H.: Preparation and characterization of electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) membrane. High Perform. Polym. 26, 817 (2014).CrossRefGoogle Scholar
Li, M., Katsouras, I., Piliego, C., Glasser, G., Lieberwirth, I., Blom, P.W.M., and de Leeuw, D.M.: Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. J. Mater. Chem. C 46, 7695 (2013).CrossRefGoogle Scholar
Biswas, A., Henkel, K., Schmeißer, D., and Mandal, D.: Comparison of the thermal stability of the α, β and γ phases in poly(vinylidene fluoride) based on in situ thermal Fourier transform infrared spectroscopy. Phase Transitions 90, 1205 (2017).Google Scholar
Abdalla, S., Obaid, A., and Al-Marzouki, F.M.: Preparation and characterization of poly(vinylidene fluoride): A high dielectric performance nano-composite for electrical storage. Results Phys. 6, 617 (2016).CrossRefGoogle Scholar
Sencadas, V., Moreira, M.V., Lanceros-Méndez, S., Pouzada, A.S., and Gregório Filho, R.: Α- to β transformation on PVDF films obtained by uniaxial stretch. Mater. Sci. Forum 514–516, 872 (2006).CrossRefGoogle Scholar
Cai, N., Zhai, J., Nan, C., Lin, Y., and Shi, Z.: Dielectric, ferroelectric, magnetic, and magnetoelectric properties of multiferroic laminated composites. Phys. Rev. B 68, 224103 (2003).CrossRefGoogle Scholar
Nan, C., Cai, N., Liu, L., Zhai, J., Ye, Y., and Lin, Y.: Coupled magnetic–electric properties and critical behavior in multiferroic particulate composites. J. Appl. Phys. 94, 5930 (2003).CrossRefGoogle Scholar
Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: Historical perspective, status. J. Appl. Physiol. 103, 031101 (2008).CrossRefGoogle Scholar
Lemine, O.M., Omri, K., Iglesias, M., Velasco, V., Crespo, P., de la Presa, P., El Mir, L., Bouzid, H., Yousif, A., and Al-Hajry, A.: γ-Fe2O3 by sol–gel with large nanoparticles size for magnetic hyperthermia application. J. Alloys Compd. 607, 125 (2014).CrossRefGoogle Scholar
Cao, D., Li, H., Pan, L., Li, J., Wang, X., Jing, P., Cheng, X., Wang, W., Wang, J., and Liu, Q.: High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach. Sci. Rep. 6, 1 (2016).Google ScholarPubMed
Strobel, R. and Pratsinis, S.E.: Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Technol. 20, 190 (2009).CrossRefGoogle Scholar
Khurshid, H., Phan, M.H., Mukherjee, P., and Srikanth, H.: Tuning exchange bias in Fe/γ-Fe2O3 core–shell nanoparticles: Impacts of interface and surface spins. Appl. Phys. Lett. 104, 1 (2014).CrossRefGoogle Scholar
Shekhar, S., Sajitha, E.P., Prasad, V., and Subramanyam, S.V.: High coercivity below percolation threshold in polymer nanocomposite. J. Appl. Phys. 104, 083910 (2008).CrossRefGoogle Scholar
Chipara, M., George, T., Xu, Y., Skomski, R., Yue, L., Ali, N., and Sellmyer, D.J.: Magnetism of FePt nanoclusters in polyimide. J. Nanomater. 2015, 587847 (2015).CrossRefGoogle Scholar
Jin, Y., Valloppilly, S., Chipara, D.M., Skomski, R., Chipara, M., Zhang, W., and Sellmyer, D.J.: On polystyrene–block polyisoprene–block polystyrene filled with carbon-coated Ni nanoparticles. J. Mater. Sci. 52, 2452 (2017).CrossRefGoogle Scholar
Lu, A., Salabas, E.L., and Schüth, F.: Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. 46, 1222 (2007).CrossRefGoogle ScholarPubMed
Radhakrishnan, S., Saujanya, C., Sonar, P., Gopalkrishnan, I., and Yakhmi, J.: Polymer-mediated synthesis of γ-Fe2O3 nano-particles. Polyhedron 20, 1489 (2001).CrossRefGoogle Scholar
Babay, S., Mhiri, T., and Toumi, M.: Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. J. Mol. Struct. 1085, 286293 (2015).CrossRefGoogle Scholar
Ennas, G., Musinu, A., Piccaluga, G., Zedda, D., Gatteschi, D., Sangregorio, C., Stanger, J.L., Concas, G., and Spano, G.: Characterization of iron oxide nanoparticles in an Fe2O3–SiO2 composite prepared by a sol–gel method. Chem. Mater. 10, 495 (1998).CrossRefGoogle Scholar
Xiao, W., Wang, Z., Guo, H., Li, X., Wang, J., Huang, S., and Gan, L.: Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries. Appl. Surf. Sci. 266, 148 (2013).CrossRefGoogle Scholar
Fleaca, C.T., Morjan, I., Alexandrescu, R., Dumitrache, F., Soare, I., and Gavrila-florescu, L.: Magnetic properties of core–shell catalyst nanoparticles for carbon nanotube growth. Appl. Surf. Sci. 255, 5386 (2009).CrossRefGoogle Scholar
Ovsienko, I.V., Matzuy, L.Y., Zakharenko, N.I., Babich, N.G., Len, T.A., Prylutsky, Y.I., Hui, D., Strzhemechny, Y.M., and Eklund, P.C.: Magnetometric studies of catalyst refuses in nanocarbon materials. Nanoscale Res. Lett. 3, 60 (2008).CrossRefGoogle Scholar
Islam, M.S., Abdulla-Al-Mamun, M., Kurawaki, J., Kusumoto, Y., and Bin Mukhlish, M.Z.: Hydrothermal novel synthesis of neck-structured hyperthermia-suitable magnetic (Fe3O4, γ-Fe2O3, and α-Fe2O3) nanoparticles. J. Sci. Res. 4, 99 (2012).CrossRefGoogle Scholar
Wu, H., Wu, G., and Wang, L.: Peculiar porous α-Fe2O3, γ-Fe2O3, and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol. 269, 443 (2015).CrossRefGoogle Scholar
Tomescu, A., Alexandrescu, R., Morjan, I., Dumitrache, F., Gavrila-Florescu, L., Birjega, R., Soare, I., Prodan, G., Bastl, Z., Galikova, A., and Pola, J.: Structural and sensing properties of a novel Fe/Fe2O3/polyoxocarbosilane core shell nanocomposite powder prepared by laser pyrolysis. J. Mater. Sci. 42, 1838 (2007).CrossRefGoogle Scholar
Jung, C.W. and Jacobs, P.: Physical and chemical properties of superparamagnetic iron oxide MR contrast agents. Ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13, 661 (1995).CrossRefGoogle ScholarPubMed
Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., and Gu, Z.: Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3, 595 (2013).CrossRefGoogle ScholarPubMed
Carvalho, M.D., Henriques, F., Ferreira, L.P., Godinho, M., and Cruz, M.M.: Iron oxide nanoparticles: The influence of synthesis method and size on composition and magnetic properties. J. Solid State Chem. 201, 144 (2013).CrossRefGoogle Scholar
Rumpf, K., Granitzer, P., Morales, P.M., Poelt, P., and Reissner, M.: Variable blocking temperature of a porous silicon/Fe3O4 composite due to different interactions of the magnetic nanoparticles. Nanoscale Res. Lett. 7, 445 (2012).CrossRefGoogle ScholarPubMed