Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T03:31:15.015Z Has data issue: false hasContentIssue false

Magnetic ordering in relaxor ferroelectric (1 − x)Pb(Fe2/3W1/3)O3xPbTiO3 single crystals

Published online by Cambridge University Press:  31 January 2011

Li Feng
Affiliation:
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
Haiyan Guo
Affiliation:
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
Zuo-Guang Ye*
Affiliation:
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Single crystals of the perovskite solid solution (1 − x)Pb(Fe2/3W1/3)O3xPbTiO3, with x = 0, 0.07, 0.27, and 0.75, have been synthesized by the high-temperature solution growth using PbO as flux and characterized by x-ray diffraction and dielectric and magnetic measurements. The crystal structure at room temperature changes from a pseudocubic to a tetragonal phase with the PbTiO3 (PT) content increasing to x ⩾ 0.27. As the amount of PT increases, the relaxor ferroelectric behavior of Pb(Fe2/3W1/3)O3 (PFW) is transformed toward a normal ferroelectric state with sharp and nondispersive peaks of dielectric permittivity at TC. Two types of magnetic orderings are observed on the temperature dependence of the magnetization in the crystals with x ⩽ 0.27. This behavior is explained based on the relationships among the magnetic ordering, perovskite structure, composition, and relaxor ferroelectric properties. Furthermore, the macroscopic magnetization of the system was measured under the application of a magnetic field, which demonstrates different magnetic behavior associated with the weakly ferromagnetic, antiferromagnetic, and paramagnetic ordering in the temperature range of 2 to 390 K. Interestingly, the low-temperature ferromagnetism is enhanced by the addition of ferroelectric PT up to x = 0.27.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ye, Z-G.Schmid, H.: Electric field induced effect on the optical, dielectric and ferroelectric properties of Pb(Fe2/3W1/3)O3 single crystals. Ferroelectrics 162, 119 1995CrossRefGoogle Scholar
2Ye, Z-G., Toda, K., Sato, M., Kita, E.Schmid, H.: Synthesis, structure and properties of the magnetically ordered relaxor ferroelectric Pb(Fe2/3W1/3)O3 [PFW]. J. Korean Phys. Soc. 32, S1028 1998Google Scholar
3Mitoseriu, L., Carnasciali, M.M., Piaggio, P.Nanni, P.: Properties of Pb(Fe2/3W1/3)O3–PbTiO3 ferroic ceramics. Appl. Phys. Lett. 81, 5506 2002Google Scholar
4Smolenskii, G.A.Bokov, V.A.: Coexistence of magnetic and electric ordering in crystals. J. Appl. Phys. 35, 915 1964CrossRefGoogle Scholar
5Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S.Cheong, S-W.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 394 2004CrossRefGoogle Scholar
6Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M.Tokura, Y.: Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401 2003CrossRefGoogle Scholar
7Smolenskii, G.A.Chupis, I.E.: Ferroelectromagnets. Usp. Fiz. Nauk. 137, 415 1982CrossRefGoogle Scholar
8Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317 1994CrossRefGoogle Scholar
9Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M.Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 2003CrossRefGoogle ScholarPubMed
10Bokov, V.A., Myl’nikova, I.E.Smolenskii, G.A.: Ferroelectricsantiferromagnets. Zh. Teor. Fiz. 42(2), 643 1962Google Scholar
11Al’shin, V.I.: Investigation of magnetoelectric interactions in magnetically ordered crystals., Cand. Sci. (Phys.–Math.) Dissertation, Leningrad. Institute of Semiconductors, USSR Academy of Sciences, 1970Google Scholar
12Uchino, K.Nomura, S.: Dielectric and magnetic properties in the solid solution system Pb(Fe2/3W1/3)O3–Pb(Co1/2W1/2)O3. Ferroelectrics 17, 505 1978CrossRefGoogle Scholar
13Goodenough, J.B., Wickham, D.G.Croft, J.W.: Some magnetic and crystallographic properties of the system Li+xNi++1−2xNi+++xO. J. Phys. Chem. Solids 5, 107 1958CrossRefGoogle Scholar
14Gilleo, M.A.: Superexchange interaction in ferrimagnetic garnets and spinals which contain randomly incomplete linkages. J. Phys. Chem. Solids 13, 33 1960CrossRefGoogle Scholar
15Ivanov, S.A., Eriksson, S–G., Tellgren, R.Rundlöf, H.: Crystal and magnetic structure of Pb(Fe2/3W1/3)O3 by neutron powder diffraction. Exp. Rep. 486, 1 2006Google Scholar
16Mitoseriu, L., Marré, D., Siri, A.S.Nanni, P.: Magnetic properties of Pb(Fe2/3W1/3)O3–PbTiO3 solid solutions. Appl. Phys. Lett. 83, 5509 2003CrossRefGoogle Scholar
17Mitoseriu, L., Marré, D., Siri, A.S., Stancu, A., Fedor, C.E.Nanni, P.: Magnetoelectric coupling in the multiferroic Pb(Fe2/3W1/3)O3–PbTiO3 system. J. Opt. Adv. Mater. 6(2), 723 2004Google Scholar
18Ye, Z-G.Schmid, H.: Growth from high temperature solution and characterization of single crystals of the complex perovskite Pb(Fe2/3W1/3)O3. J. Cryst. Growth 167, 628 1996 PFWCrossRefGoogle Scholar
19Feng, L.Ye, Z-G.: Phase diagram and phase transitions of the relaxor ferroelectric-based Pb(Fe2/3W1/3)O3–PbTiO3 system. J. Solid State Chem. 163, 484 2002CrossRefGoogle Scholar
20Dzialoshinskii, I.E.: Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5(6), 1259 1957Google Scholar
21Yang, Y., Liu, J-M., Huang, H.B., Zou, W.Q., Bao, P.Liu, Z.G.: Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)O3 single crystals. Phys. Rev. B 70, 132101 2004CrossRefGoogle Scholar