Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T06:16:32.881Z Has data issue: true hasContentIssue false

Magnetic, electrical, and thermal characterization of La0.9Te0.1Mn1−xCoxO3 (0 ≤ x ≤ 1)

Published online by Cambridge University Press:  31 January 2011

R. Ang
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, and Hefei High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
Y.P. Sun*
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, and Hefei High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
G.H. Zheng
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, and Hefei High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
W.H. Song
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, and Hefei High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

The structure, magnetization M, resistivity ρ, thermoelectric power S, and thermal conductivity κ in La0.9Te0.1Mn1−xCoxO3 (0 ≤ x ≤ 1) have been investigated systematically. The samples with x = 0 and x = 1 have a rhombohedral lattice with space group R¯3C, while the samples with x = 0.25, 0.50, and 0.75 have an orthorhombic lattice with space group Pbnm. The samples of 0 ≤ x ≤ 0.75 undergo the paramagnetic–ferromagnetic (PM–FM) phase transition. Based on the temperature dependence of susceptibility, a combination of the high-spin (HS) state for Co2+ and the low-spin (LS) state for Co3+ can be determined. The metal–insulator transitions (MIT) observed for x = 0 sample are completely suppressed with Co-doping, and ρ(T) displays semiconducting behavior within the measured temperature region for x > 0 samples. As x ⩾ 0.25, the huge magnitude of Seebeck coefficient at low temperatures is observed, which is suggested to originate from the spin-state transition of Co3+ ions from intermediate-spin (IS) state or (HS) state to (LS) state and the configurational entropy of charge carriers enhanced by their spin and orbital degeneracy between Co2+ and Co3+ sites. Particularly, S(T) of x = 0.50 and 0.75 samples appears an anomalous peak, which is suggested to be related to the contribution of phonon drag. Similar to M(T) and ρ(T), all results of S(T) are discussed according to the variations of the structure parameters and magnetic exchange interaction caused by Co-doping. In addition, based on the analysis of the temperature dependence of S(T) and ρ(T), the transport mechanism can be determined in the different temperature region. As to thermal conduction κ(T), the changes of κ with Co-doping is suggested to come from the combined effect due to the suppression of local Mn3+O6 Jahn–Teller (JT) lattice distortion because of the substitution of non JT Co3+ ions with LS and HS states for JT Mn3+ ions, which results in the increase of κ, and the introduction of the disorder due to Co-doping, which contributes to the decrease of κ.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R.Chen, L.H.: Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413 1994CrossRefGoogle ScholarPubMed
2Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T.Tokura, Y.: A structural phase transition induced by an external magnetic field. Nature 373, 407 1995CrossRefGoogle Scholar
3von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L.Samwer, K.: Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 1993CrossRefGoogle Scholar
4Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 1951CrossRefGoogle Scholar
5Goodenough, J.B.: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564 1955CrossRefGoogle Scholar
6Millis, A.J., Littlewood, P.B.Shraiman, B.I.: Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144 1995CrossRefGoogle Scholar
7Mandal, P.Das, S.: Transport properties of Ce-doped RMnO3 (R= La, Pr, and Nd) manganites. Phys. Rev. B 56, 15073 1997CrossRefGoogle Scholar
8Roy, S.Ali, N.: Charge transport and colossal magnetoresistance phenomenon in La1−xZrxMnO3. J. Appl. Phys. 89, 7425 2001CrossRefGoogle Scholar
9Tan, G.T., Dai, S.Y., Duan, P., Zhou, Y.L., Lu, H.B.Chen, Z.H.: Colossal magnetoresistance behavior and ESR studies of La1−xTexMnO3 (0.04 ≤ x ≤ 0.2). Phys. Rev. B 68, 014426 2003CrossRefGoogle Scholar
10Tan, G.T., Dai, S.Y., Duan, P., Zhou, Y.L., Lu, H.B.Chen, Z.H.: Structural, electric and magnetic properties of the electron-doped manganese oxide: La1−xTexMnO3 (x = 0.1, 0.15). J. Appl. Phys. 93, 5480 2003CrossRefGoogle Scholar
11English, S.R., Wu, J.Leighton, C.: Thermally excited spin-disorder contribution to the resistivity of LaCoO3. Phys. Rev. B 65, 220407 2002CrossRefGoogle Scholar
12Gayathri, N., Raychaudhuri, A.K., Tiwary, S.K., Gundakaram, R., Arulraj, A.Rao, C.N.R.: Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: A study of the La0.7Ca0.3Mn1−xCoxO3 system. Phys. Rev. B 56, 1345 1997CrossRefGoogle Scholar
13Srivastava, C.M., Banerjee, S., GunduRao, T.K., Nigam, A.K.Bahadur, D.: Evidence of spin transition and charge order in cobalt substituted La0.7Ca0.3MnO3. J. Phys.: Condens. Matter 15, 2375 2003Google Scholar
14Zheng, G.H., Sun, Y.P., Zhu, X.B.Song, W.H.: Structure, magnetic, and transport properties of the Co-doped manganites in La0.9Te0.1Mn1−xCoxO3 (0 ≤ x ≤ 0.25). Solid State Commun. 137, 326 2006CrossRefGoogle Scholar
15Wiles, D.B.Young, R.A.: A new computer program for Rietveld analysis of x-ray powder diffraction patterns. J. Appl. Crystallogr. 14, 149 1981CrossRefGoogle Scholar
16Ghosh, K., Ogale, S.B., Ramesh, R., Greene, R.L., Venkatesan, T., Gapchup, K.M., Bathe, RaviPatil, S.I.: Transition-element doping effects in La0.7Ca0.3MnO3. Phys. Rev. B 59, 533 1999CrossRefGoogle Scholar
17Satpathy, S., Popovic, Z.S.Vukajlovic, F.R.: Electronic structure of the perovskite oxides: La1−xCaxMnO3. Phys. Rev. Lett. 75, 960 1996CrossRefGoogle Scholar
18Blundell, S.: Magnetism in Condensed Matter Oxford University Press New York 2001 272CrossRefGoogle Scholar
19de Brion, S., Ciorcas, F., Chouteau, G., Lejay, P., Radaelli, P.Chaillout, C.: Magnetic and electric properties of La1−δMnO3. Phys. Rev. B 59, 1304 1999CrossRefGoogle Scholar
20Taskin, A.A.Ando, Y.: Electron–hole asymmetry in GdBaCo2O5+x: Evidence for spin blockade of electron transport in a correlated electron system. Phys. Rev. Lett. 95, 176603 2005CrossRefGoogle Scholar
21Pi, L., Zheng, L.Zhang, Y.: Transport mechanism in polycrystalline La0.825Sr0.175Mn1−xCuxO3. Phys. Rev. B 61, 8917 2000CrossRefGoogle Scholar
22Mandal, P.: Temperature and doping dependence of the thermopower in LaMnO3. Phys. Rev. B 61, 14675 2000CrossRefGoogle Scholar
23Ang, R., Lu, W.J., Zhang, R.L., Zhao, B.C., Zhu, X.B., Song, W.H.Sun, Y.P.: Effects of Co doping in bilayered manganite LaSr2Mn2O7: Resistivity, thermoelectric power, and thermal conductivity. Phys. Rev. B 72, 184417 2005CrossRefGoogle Scholar
24Chaikin, P.M.Beni, G.: Thermopower in the correlated hopping regime. Phys. Rev. B 13, 647 1976CrossRefGoogle Scholar
25Koshibae, W., Tsutsui, K.Mackawa, S.: Thermopower in cobalt oxides. Phys. Rev. B 62, 6869 2000CrossRefGoogle Scholar
26Mott, N.F.Davis, E.A.: Electronic Processes in Non-crystalline Materials 2 ed.Oxford University Press New York 1979 604 ppGoogle Scholar
27Uhlenbruck, S., Buchner, B., Gross, R., Freimuth, A., de Guevara, A. Maria LeonRevcolevschi, A.: Thermopower and anomalous heat transport in La0.85Sr0.15MnO3. Phys. Rev. B 57, 5571 1998CrossRefGoogle Scholar
28Asamitsu, A., Moritomo, Y.Tokura, Y.: Thermoelectric effect in La1−xSrxMnO3. Phys. Rev. B 53, 2952 1996CrossRefGoogle ScholarPubMed
29Barnard, R.D.: Thermoelectricity in Metals and Alloys Taylor and Francis London 1972Google Scholar
30Jaime, M., Salamon, M.B., Pettit, K., Rubinstein, M., Treece, R.E., Horwitz, J.S.Chrisey, D.B.: Magnetothermopower in La0.67Ca0.33MnO3 thin films. Appl. Phys. Lett. 68, 1576 1996CrossRefGoogle Scholar
31Zvyagin, I.P., Kurova, I.A.Ormont, N.N.: Variable range hopping in hydrogenated amorphous silicon. Phys. Status Solidi C 1, 101 2004CrossRefGoogle Scholar
32Snyder, G. Jeffrey, Hiskes, R., Dicarolis, S., Beasley, M.R.Geballe, T.H.: Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 1996CrossRefGoogle ScholarPubMed
33Banerjee, A., Pal, S., Bhattacharya, S., Chauhuri, B.K.Yang, H.D.: Magnetoresistance and magnetothermoelectric power of La0.5Pb0.5Mn1−xCrxO3. Phys. Rev. B 64, 104428 2001CrossRefGoogle Scholar
34Zvyagin, I.P.: Hopping Transport in Solids, edited by M. Pollak and B. Shklovskii (North-Holland, Amsterdam 1991 Vol. 28, Chap. 5, pp. 143–174CrossRefGoogle Scholar
35Matsukawa, M., Narita, M., Nishimura, T., Yoshizawa, M., Apostu, M., Suryanarayanan, R., Revcolevschi, A., Itoh, K.Kobayashi, N.: Anisotropic phonon conduction and lattice distortions in colossal-magnetoresistance bilayer manganite (La1−zPrz)1.2Sr1.8Mn2O7 (z= 0, 0.2, 0.4, and 0.6) single crystals. Phys. Rev. B 67, 104433 2003CrossRefGoogle Scholar