Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T14:47:05.813Z Has data issue: false hasContentIssue false

Lu2O3:Eu3+ nanoparticles and processed ceramics: Structural and spectroscopic studies

Published online by Cambridge University Press:  03 March 2011

Kai Zhang
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504
A.K. Pradhan*
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504
G.B. Loutts
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504
U.N. Roy
Affiliation:
Department of Physics, Fisk University, Nashville, Tennessee 37208
Y. Cui
Affiliation:
Department of Physics, Fisk University, Nashville, Tennessee 37208
A. Burger
Affiliation:
Department of Physics, Fisk University, Nashville, Tennessee 37208
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Europium-doped lutetium oxide (Lu2O3:Eu3+) nanophosphors were synthesized via modified combustion technique using urea as the fuel and metal nitrates as oxidants. The pellets prepared from the calcined nanocrystalline powders were vacuum sintered up to 1750 °C leading to very translucent ceramic. The products were characterized by x-ray diffraction to ascertain phase purity. The microstructures reveal the nanocrystalline nature of the powders. We have illustrated the crystallite size dependence and the influence of Eu3+ activation of Lu2O3:Eu3+ nanophosphors on Raman scattering. We have also demonstrated the particle size dependence of emission characteristics of nanophosphors and ceramics. Our results suggest that although the processed ceramics display superior emission characteristics, the nanocrystalline phosphor powders calcined at 1100 °C also display reasonably good emission characteristics, illustrating the possibility of their applications in display technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mishra, K.C., Berkowitz, J.K., Johnson, K.H. andSchmidt, P.C.: Optical properties of europium-activated oxide phosphor. Phys. Rev. B 45 10902 (1992).Google Scholar
2.Rop, R.C. The chemistry of artificial lighting devices: lamps, phosphors, and cathode ray tubes. The Chemistry of Artificial Lighting Devices: Lamps, Phosphors, and Cathode Ray Tubes, (Elsevier, New York, 1993).Google Scholar
3.Itoh, S., Kimizuka, T. andTonegawa, T.: Degradation mechanism for low-voltage cathodoluminescence of sulphide phosphors. J. Electrochem. Soc. 136 1819 (1989).CrossRefGoogle Scholar
4.Stewart, T.H.C., Sebastian, J.S., Trottier, T.A., Jones, S.L. andHorr, P.H.: Degradation of zinc sulphide phosphors under electron bombardment. J. Vac. Sci. Technol. A 14 1697 (1996).Google Scholar
5.Ye, T., Guiwen, Z., Weiping, Z. andShangda, X.: Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Lu phosphor. Mater. Res. Bull. 32 501 (1997).CrossRefGoogle Scholar
6.Lu, J., Mura, T., Takaichi, K., Uematsu, T., Ueda, K., Yagi, H., Yanagitani, T. andKaminskii, A.A.: Nd3+:Y2O3 ceramic laser. Jpn. J. Appl. Phys. 40 L1277 (2001).Google Scholar
7.Jones, S.L., Kumar, D., Singh, R.K. andHolloways, P.H.: Luminescence of pulsed laser deposited Eu doped yttrium oxide films. Appl. Phys. Lett. 71 404 (1997).Google Scholar
8.Bae, J.S., Jeong, J.H., Yi, S-S. andPark, J-C.: Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ film phosphor. Appl. Phys. Lett. 82 3629 (2003).CrossRefGoogle Scholar
9.Cho, K.G., Kumar, D., Lee, D.G., Jones, S.L., Holloways, P.H. andSingh, R.K.: Improved luminescence properties of pulsed laser deposited Y2O3:Eu3+ films on diamond coated silicon substrates. Appl. Phys. Lett. 71 3335 (1997).CrossRefGoogle Scholar
10.Zych, E., Hreniak, D. andStrek, W.: Spectroscopy of Eu-doped Lu2O3-based x-ray phosphors. J. Alloys Compd. 341 385 (2002).Google Scholar
11.Lempicki, A., Brecher, C., Szupryczynski, P., Lingertat, H., Nagarkar, V.V., Tipnis, S.V. andMiller, S.R.: A new lutetia-based ceramics scintillator for x-ray imaging. Nucl. Instrum. Meth. A 488 579 (2002).Google Scholar
12.Brecher, C., Bartram, R.H. andLempicki, A.: Hole traps in Lu2O3: Eu ceramic scintillators. I. Persistent afterglow. J. Lumin. 106 159 (2004).CrossRefGoogle Scholar
13.Wickersheim, A. andLefever, R.A.: J. Electrochem. Soc. 111 47 (1964).Google Scholar
14.Zych, E.: On the reasons for low luminescence efficiency in combustion-made Lu2O3:Tb. Opt. Mater. 16 445 (2001).Google Scholar
15.Zych, E., Meijerink, A. andDonega, M.: Quantum efficiency of europium emission from nanocrystalline powders of Lu2O3:Eu. J. Phys.: Condens. Matter 15 5145 (2003).Google Scholar
16. K. Zhang, A.K. Pradhan, G.B. Loutts, U.N. Roy, Y. Cui, and A. Burger: Enhanced luminescence and size effects of Y2O3:Eu3+ nanoparticles and ceramics revealed by x-rays and Raman scattering. (unpublished).Google Scholar
17.Repelin, Y., Proust, C., Husson, E. andBenny, J.M.: Vibrational spectroscopy of C-form of yttrium sesquioxide. J. Solid State Chem. 118 163 (1995).CrossRefGoogle Scholar
18.Zych, E.: Concentration dependence of energy transfer between Eu3+ ions occupying two symmetry sites in Lu2O3. J. Phys.: Condens. Matter 14 5637 (2002).Google Scholar
19.Brixner, L.H.: New x-ray phosphors. Mater. Chem. Phys. 16 253 (1987).Google Scholar