Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T03:56:22.506Z Has data issue: false hasContentIssue false

A low-temperature technique for measuring enthalpies of formation

Published online by Cambridge University Press:  31 January 2011

T. P. Weihs
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550
T. W. Barbee Jr.
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550
M. A. Wall
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550
Get access

Abstract

A technique to accurately measure the formation enthalpies of transition metal compounds at relatively low temperatures using thick multilayer foils and differential scanning calorimetry is demonstrated. The enthalpy of formation of Cu51Zr14 was measured using 25 μm thick, free-standing Cu–Zr multilayer foils. The multilayers were deposited onto Si substrates using a planetary, magnetron source sputtering system. They were removed from their substrates, cut into 6 mm diameter specimens, and scanned in temperature from 50 °C to 725 °C in a differential scanning calorimeter. Three distinct exothermic reactions were systematically observed. The heats from the first two reactions were summed and then analyzed using a simple model that accounts for interfacial reactions and heat losses during deposition. The enthalpy of formation for Cu51Zr14 was measured to be 14.3 ± 0.3 kJ/mol. This quantity agrees with the single value of ΔHf = 14.07 ± 1.07 kJ/mol reported in the literature for this Cu–Zr compound. The advantages of measuring formation enthalpies using thick multilayer foils and low temperature calorimetry are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bormann, R., Gartner, F., and Haider, F., Mater. Sci. Eng. 97, 79 (1988).CrossRefGoogle Scholar
2.Kleppa, O. J., J. Phase Equil. 15, 240 (1994).CrossRefGoogle Scholar
3.Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry (Pergamon Press, New York, 1979).Google Scholar
4.Kleppa, O. J. and Wanatabe, S., Metall. Trans. B 13, 391 (1982).CrossRefGoogle Scholar
5.Gachon, J. C. and Hertz, J., CALPHAD. 7, 1 (1983).CrossRefGoogle Scholar
6.Arias, D. and Abriata, J. P., Bull. Alloy Phase Dia. 11, 452 (1990).CrossRefGoogle Scholar
7.Barbee, T. W. Jr., in Synthetic Modulated Structures, edited by Chang, L. and Giessen, B. C. (Academic Press, New York, 1985), pp. 313337.CrossRefGoogle Scholar
8.Johnson, W. L., Mater. Sci. Eng. 97, 1 (1988).CrossRefGoogle Scholar
9.Greer, A. L., Karpe, N., and Bottiger, J., J. Alloys Comp. 194, 199 (1993).CrossRefGoogle Scholar
10.Schwarz, R. B. and Rubin, J.B., J. Alloys Comp. 194, 189 (1992).CrossRefGoogle Scholar
11.Phase Transformations in Thin Films—Thermodynamics and Kinetics, edited by Atzmon, M., Greer, A. L., Harper, J. M. E., and Libera, M. R. (Mater. Res. Soc. Symp. Proc. 311, Pittsburgh, PA, 1993).Google Scholar
12.Weihs, T. P., Barbee, T. W. Jr., and Wall, M. A., in Phase Transformations in Thin Films—Thermodynamics and Kinetics, edited by Atzmon, M., Greer, A. L., Harper, J. M. E., and Libera, M. R. (Mater. Res. Soc. Symp. Proc. 311, Pittsburgh, PA, 1993).Google Scholar
13.Weihs, T. P., Barbee, T. W. Jr., and Wall, M. A., unpublished.Google Scholar
14.Spaepen, F. and Thompson, C. V., Appl. Surf. Sci. 38, 1 (1989).CrossRefGoogle Scholar
15.Cotts, E. J., Meng, W. J., and Johnson, W. L., Phys. Rev. Lett. 57, 2295 (1986).CrossRefGoogle Scholar
16.Highmore, R. J., Evetts, J. E., Greer, A. L., and Somekh, R. E., Appl. Phys. Lett. 50, 566 (1987).CrossRefGoogle Scholar
17.Barbee, T. W. Jr., Walmsley, R. G., Marshall, A. F., Keith, D. L., and Stevenson, D. A., Appl. Phys. Lett. 38, 132 (1981).CrossRefGoogle Scholar
18.Anamet Laboratories, Inc., 3400 Investment Blvd., Hayward, CA 94545.Google Scholar
19.Perkin-Elmer Corporation, 761 Main Ave., Norwalk, CT 06859–0156.Google Scholar
20.Wall, M., Micro. Res. Technol. 27, 262 (1994).CrossRefGoogle Scholar
21.Marshall, A. F., Walmsely, R. G., and Stevenson, D. A., Mater. Sci. Eng. 63, 215 (1984).CrossRefGoogle Scholar