Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T00:48:48.677Z Has data issue: false hasContentIssue false

Low temperature reactions of thin layers of Mn with Si

Published online by Cambridge University Press:  31 January 2011

Lin Zhang
Affiliation:
Department of Mining, Metallurgical and Petroleum Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G6
Douglas G. Ivey
Affiliation:
Department of Mining, Metallurgical and Petroleum Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G6
Get access

Abstract

Reactions between manganese thin films and silicon substrates, annealed at relatively low temperatures (<430 °C), have been systematically investigated. Three phases, i.e., Mn3Si, Mn5Si3, and MnSi, were formed through a layered growth process. The formation sequence for these silicides was Mn3Si, MnSi, and then Mn5Si3. The unusual phenomena of coexistence of these three phases and simultaneous growth of two phases (MnSi and Mn5Si3) were also observed. A model has been proposed to explain the growth behavior. The formation sequence of Mn3Si, MnSi, and then Mn5Si3, and simultaneous growth of MnSi and Mn5Si3, can be explained by considering both thermodynamic and kinetic effects. Only those reactions that are thermodynamically allowed and kinetically preferred can take place. Kinetic preference is determined by the composition in the reaction region, which is controlled by the diffusion flux of the moving reactant. The proposed model is also compared with existing models.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nicolet, M.A. and Lau, S.S., in VLSI Electronics Microstructure Science, edited by Einsprunch, Norman G. and Larrabee, Graydon B. (Academic Press, New York, 1983), Vol. 6, Chap. 6, p. 329.Google Scholar
2.Murarka, S. P., Suicides for VSLI Applications (Academic Press, New York, 1983).Google Scholar
3.Calandra, C., in Springer Series in Materials Science-Semiconductor Silicon, edited by Harbeke, G. C. and Schultz, M. J. (Springer-Verlag, Berlin, Heidelberg, 1989), Vol. 13, p. 252.CrossRefGoogle Scholar
4.Balluffi, R. W. and Blakely, J. M., Thin Solid Films 25, 363 (1975).CrossRefGoogle Scholar
5.Walser, R.M. and Bene, R.W., Appl. Phys. Lett. 28, 624 (1976).CrossRefGoogle Scholar
6.Ottaviani, G., J. Vac. Sci. Technol. 16, 1112 (1979).CrossRefGoogle Scholar
7.Tsaur, B.Y., Lau, S.S., Mayer, J.W., and Nicolet, M-A., Appl. Phys. Lett. 38, 922 (1981).CrossRefGoogle Scholar
8.Tu, K. N., Ann. Rev. Mater. Sci. 15, 147 (1985).CrossRefGoogle Scholar
9.D'Heurle, F.M. and Gas, P., J. Mater. Res. 1, 205 (1986).CrossRefGoogle Scholar
10.Ottaviani, G., Thin Solid Films 140, 3 (1986).CrossRefGoogle Scholar
11.Tu, K.N., in Advances in Electronic Materials, edited by Wessels, B.W. and Chin, G.Y. (American Society for Metals, Metals Park, OH, 1986), Chap. 7, p. 147.Google Scholar
12.Ottaviani, G. and Nobili, C., Thin Solid Films 163, 111 (1988).CrossRefGoogle Scholar
13.Borucki, L., Mann, R., Miles, G., Slinkman, J., and Sullivan, T., 1988 IEEE International Electron Devices Meeting, San Francisco, CA, Dec. 14–16 (1988), p. 348.Google Scholar
14.Crowder, B. and Zirinsky, S., IEEE Trans. Electron Devices ED-26, 369 (1979).CrossRefGoogle Scholar
15.Geipe, H.J. Jr, Hsieh, N., Ishaq, M.H., Koburger, C.W., and White, F.R., IEEE Trans. Electron Devices ED-27, 1417 (1980).CrossRefGoogle Scholar
16.Tsaur, B-Y., Chen, C.K., and Anderson, C.H. Jr, J. Appl. Phys. 57, 1890 (1985).CrossRefGoogle Scholar
17.Paul Chow, T. and Stecki, Andrew J., IEEE Trans. Electron Devices ED-30, 1480 (1983).CrossRefGoogle Scholar
18.Li, Bing-Zong, Zhou, Shi-Fang, Li, Jia, and Tang, Ting-Ao, J. Vac. Sci. Technol. B 5, 1667 (1987).CrossRefGoogle Scholar
19.Eizenberg, M. and Tu, K. N., J. Appl. Phys. 53, 6885 (1982).CrossRefGoogle Scholar
20.Shunk, F. A., Constitution of Binary Alloys, Second Supplement (McGraw-Hill, Inc., New York, 1969), p. 507.Google Scholar
21.Donnay, J. D. M. and Ondik, H. M., in Crystal Data-Determinative Table V2, U.S. Department of Commerce, National Bureau of Standards and the Joint Committee on Powder Diffraction Standards (1973), PT171.Google Scholar
22.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallography Data for Intermetallic Phases VI (American Society for Metals, Metal Park, OH, 1985), p. 471.Google Scholar
23.Ye, H. Q. and Amelinckx, S., in Modulated Structure Materials, edited by Tsakalakos, T. (Martinus Nijhoff Publishers, 1984), p. 173.CrossRefGoogle Scholar
24.Kawasuni, I., Sakata, M., Nishida, I., and Masumoto, K., J. Mater. Sci. 16, 355 (1981).CrossRefGoogle Scholar
25.Nishida, I., J. Mater. Sci. 7, 435 (1972).CrossRefGoogle Scholar
26.Krontiras, Ch., Pomoni, K., and Roilos, M., J. Phys. D: Appl. Phys. 21, 509 (1988).CrossRefGoogle Scholar
27.Sundstrom, K. E., Petersson, S., and Tove, P. A., Phys. Status Solidi A20, 653 (1973).CrossRefGoogle Scholar
28.Samsonov, G. V., in No. 2 Properties Index (Plenum Press, New York, 1964), p. 161.CrossRefGoogle Scholar
29.Bost, M.C. and Mahan, J.E., J. Electr. Mater. 16, 389 (1987).CrossRefGoogle Scholar
30.Bost, M. C. and Mahan, J. E., J. Appl. Phys. 58, 2696 (1985).CrossRefGoogle Scholar
31.Bost, M.C. and Mahan, J.E., unpublished data (1987).Google Scholar
32.Long, R. G., Bost, M. C., and Mahan, J. E., unpublished data (1988).Google Scholar
33. Powder Diffraction Files, JCPDS-International Center for Diffraction Data.Google Scholar
34.Ivey, D. G. and Piercy, G. R., J. Electron Microscopy Technique 8, 233 (1988).CrossRefGoogle Scholar
35.Bravman, J. C. and Sinclair, R., J. Electron Microscopy Technique 1, 53 (1984).CrossRefGoogle Scholar
36.Samsonov, G. V. and Vinitskii, I. M., in Handbook of Refractory Compounds (IFI/Plenum, 1980), pp. 130, 134, and 152.CrossRefGoogle Scholar
37.Weast, R. C., Handbook of Chemistry and Physics, 56th ed. (CRC Press, Inc., 19751976), p. D62.Google Scholar
38.Ottaviani, G. and Mayer, J. W., in Reliability and Degradation Semiconductor Device and Circuits, edited by Howes, M. J. and Morgan, D.V. (Wiley, New York, 1981), p. 105.Google Scholar
39.Nava, F., Valeri, S., Majni, G., Cembali, A., Pignatel, G., and Queirolo, G., J. Appl. Phys. 52, 6641 (1981).CrossRefGoogle Scholar
40.Kidson, G.V., J. Nucl. Mater. 3, 21 (1961).CrossRefGoogle Scholar
41.Wagner, C., Acta Metall. 17, 99 (1969).CrossRefGoogle Scholar
42.Hickl, A.J. and Heckel, R.W., Metall. Trans. 6A, 431 (1975).CrossRefGoogle Scholar
43.Shatynski, S. R., Hirth, J. P., and Rapp, R. A., Acta Metali. 24, 1071 (1976).CrossRefGoogle Scholar
44.Gösele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
45.Tu, K. N. and Mayer, J. W., in Thin Film-Interdìffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (Wiley, New York, 1978), Chap. 10, p. 359.Google Scholar
46.Tu, K. N., Ottaviani, G., Gösele, U., and Foil, H., J. Appl. Phys. 54, 758 (1983).CrossRefGoogle Scholar
47.Tu, K. N., Ottaviani, G., Thompson, R. D., and Mayer, J. W., J. Appl. Phys. 53, 4406 (1982).CrossRefGoogle Scholar
48.Niessan, A. K., De Boer, F. R., Boom, R., deChâtel, P. F., Mathens, W. C. M., and Miedema, A. R., CALPHAD 7, 51 (1983).CrossRefGoogle Scholar
49.Miedema, A.R., deChâtel, P. F., and De Boer, F.R., Physica 100B, 1 (1980).Google Scholar