Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T17:24:00.974Z Has data issue: false hasContentIssue false

Low temperature photoluminescence spectroscopy studies on sputter deposited CdS/CdTe junctions and solar cells

Published online by Cambridge University Press:  11 January 2016

Mohit Tuteja*
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
Prakash Koirala
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, USA
Julio Soares
Affiliation:
Frederick-Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
Robert Collins
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, USA
Angus Rockett
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Device quality CdS/CdTe heterostructures and completed solar cells (∼12% efficient) have been studied using photoluminescence (PL) as a function of temperature and laser excitation power. The CdS/CdTe junctions were grown on transparent conducting oxide covered soda lime glass using radio frequency sputter deposition. In the current work we found that the PL spectra of sputtered and thermally evaporated CdTe absorber films share common features. It was found that the luminescence shifts from being dominated by sub-gap defect-mediated emission at lower excitation powers to near band edge excitonic emission at higher excitation powers. It was found that the presence of Cu suppresses the sub-band gap PL emissions. This effect was concluded to be due either to Cu occupying cadmium vacancies (VCd) or forming acceptor complexes with them. This points to a potential role of Cu in eliminating sub-band gap recombination routes and hence increasing the charge separation ability of the device.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

First Solar: First Solar, press release, 5 February 2015. at http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=895118.Google Scholar
Okamoto, T., Yamada, A., and Konagai, M.: Optical and electrical characterizations of highly efficient CdTe thin film solar cells. Thin Solid Films 387, 610 (2001).CrossRefGoogle Scholar
Halliday, D., Eggleston, J., and Durose, K.: A photoluminescence study of polycrystalline thin-film CdTe/CdS solar cells. J. Cryst. Growth 186, 543549 (1998).CrossRefGoogle Scholar
Vatavu, S., Zhao, H., Caraman, I., Gaşin, P., and Ferekides, C.: The copper influence on the PL spectra of CdTe thin film as a component of the CdS/CdTe heterojunction. Thin Solid Films 517, 21952201 (2009).CrossRefGoogle Scholar
Taguchi, T., Shirafuji, J., and Inuishi, Y.: Edge and donor-acceptor pair emissions in cadmium telluride. Jpn. J. Appl. Phys. 12, 15581566 (1973).Google Scholar
Li, C., Wu, Y., Poplawsky, J., Pennycook, T.J., Paudel, N., Yin, W., Haigh, S.J., Oxley, M.P., Lupini, A.R., Al-Jassim, M., Pennycook, S.J., and Yan, Y.: Grain-boundary-enhanced carrier collection in CdTe solar cells. Phys. Rev. Lett. 112, 156103 (2014).Google Scholar
Moutinho, H.R., Al-Jassim, M.M., Levi, D.H., Dippo, P.C., and Kazmerski, L.L.: Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films. J. Vac. Sci. Technol. A 16, 12511257 (1998).Google Scholar
Chou, H.C., Rohatgi, A., Thomas, E.W., Kamra, S., and Bhat, A.K.: Effects of Cu on CdTe/CdS heterojunction solar cells with Au/Cu contacts. J. Electrochem. Soc. 142, 254259 (1995).CrossRefGoogle Scholar
Giles-Taylor, N.C., Bicknell, R.N., Blanks, D.K., Myers, T.H., and Schetzina, J.F.: Photoluminescence of CdTe: A comparison of bulk and epitaxial material. J. Vac. Sci. Technol. A 3, 7682 (1985).CrossRefGoogle Scholar
Aguilar-Hernández, J., Contreras-Puente, G., Figueroa-Estrada, J.M., and Zelaya-Angel, O.: Photoluminescence studies of semiconducting polycrystalline CdTe films. Jpn. J. Appl. Phys. 33, 3741 (1994).CrossRefGoogle Scholar
Feng, Z.C., Mascarenhas, A., and Choyke, W.J.: Low temperature photoluminescence spectra of (001) CdTe films grown by molecular beam epitaxy at different substrate temperatures. J. Lumin. 35, 329341 (1986).CrossRefGoogle Scholar
Grecu, D. and Compaan, A.D.: Photoluminescence study of Cu diffusion and electromigration in CdTe. Appl. Phys. Lett. 75, 361363 (1999).Google Scholar
Visoly-Fisher, I., Cohen, S.R., Ruzin, A., and Cahen, D.: How polycrystalline devices can outperform single-crystal ones: Thin film CdTe/CdS solar cells. Adv. Mater. 16, 879883 (2004).CrossRefGoogle Scholar
Tuteja, M., Koirala, P., MacLaren, S., Collins, R., and Rockett, A.: Direct observation of electrical properties of grain boundaries in sputter-deposited CdTe using scan-probe microwave reflectivity based capacitance measurements. Appl. Phys. Lett. 107, 142106 (2015).CrossRefGoogle Scholar
Plotnikov, V.V., Vasko, A.C., Compaan, A.D., Liu, X., Wieland, K.A., Zeller, R.M., Li, J., and Collins, R.W.: Magnetron sputtering for II-VI solar cells: Thinning the CdTe. MRS Online Proc. Libr. 1165, 1165M09-01 (2009).CrossRefGoogle Scholar
Vatavu, S., Zhao, H., Padma, V., Rudaraju, R., Morel, D.L., Gaşin, P., Caraman, I., and Ferekides, C.S.: Photoluminescence studies of CdTe films and junctions. Thin Solid Films 515, 61076111 (2007).Google Scholar
Okamoto, T., Matsuzaki, Y., Amin, N., Yamada, A., and Konagai, M.: Characterization of highly efficient CdTe thin film solar cells by low-temperature photoluminescence. Jpn. J. Appl. Phys. 37, 38943899 (1998).Google Scholar
Shao, M., Fischer, A., Grecu, D., Jayamaha, U., Bykov, E., Contreras-Puente, G., Bohn, R.G., and Compaan, A.D.: Radio-frequency-magnetron-sputtered CdS/CdTe solar cells on soda-lime glass. Appl. Phys. Lett. 69, 30453047 (1996).CrossRefGoogle Scholar
Koirala, P., Tan, X., Li, J., Podraza, N.J., Marsillac, S., Rockett, A.A., and Collins, R.W.: Mapping spectroscopic ellipsometry of CdTe solar cells for property-performance correlations. In 40th IEEE Photovoltaic Specialists Conference (IEEE: Denver, 2014); pp. 06740679. doi: 10.1109/PVSC.2014.6925011.Google Scholar
Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506514 (2014).Google Scholar
Pauls, R.E. and Rogers, L.B.: Band broadening studies using parameters for an exponentially modified Gaussian. Anal. Chem. 49, 625628 (1977).CrossRefGoogle Scholar
Yau, W.W.: Characterizing skewed chromatographic band broadening. Anal. Chem. 49, 395398 (1977).Google Scholar
Schmidt, T., Lischka, K., and Zulehner, W.: Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 89898994 (1992).Google Scholar
Krustok, J., Collan, H., and Hjelt, K.: Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? J. Appl. Phys. 81, 14421445 (1997).Google Scholar
Marple, D.T.F.: Effective electron mass in CdTe. Phys. Rev. 129, 24662470 (1963).Google Scholar
Berding, M.A.: Native defects in CdTe. Phys. Rev. B 60, 89438950 (1999).Google Scholar
Strzalkowski, I., Joshi, S., and Crowell, C.R.: Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe. Appl. Phys. Lett. 28, 350352 (1976).Google Scholar
Camassel, J., Auvergne, D., Mathieu, H., Triboulet, R., and Marfaing, Y.: Temperature dependance of the fundamental absorption edge in CdTe. Solid State Commun. 13, 6368 (1973).Google Scholar
Romero, M.J., Albin, D.S., Al-Jassim, M.M., Wu, X., Moutinho, H.R., and Dhere, R.G.: Cathodoluminescence of Cu diffusion in CdTe thin films for CdTe/CdS solar cells. Appl. Phys. Lett. 81, 29622964 (2002).Google Scholar
Hofmann, D.M., Omling, P., Grimmeiss, H.G., Meyer, B.K., Benz, K.W., and Sinerius, D.: Identification of the chlorine A center in CdTe. Phys. Rev. B 45, 62476250 (1992).Google Scholar
Aguilar-Hernandez, J., Contreras-Puente, G., Flores-Llamas, H., Yee-Madeira, H., and Zelaya-Angel, O.: The temperature-dependence of the energy band gap of CSVT-grown CdTe films determined by photoluminescence. J. Phys. D: Appl. Phys. 28, 1517 (1995).Google Scholar
James, K.M., Merz, J.L., and Jones, C.E.: Luminescence study of copper‐implanted and rapid‐thermal‐annealed cadmium telluride. J. Vac. Sci. Technol. A 6, 26642669 (1988).Google Scholar
Laurenti, J.P., Bastide, G., Rouzeyre, M., and Triboulet, R.: Localized defects in p-CdTe:Cu doped by copper incorporation during Bridgman growth. Solid State Commun. 67, 11271130 (1988).CrossRefGoogle Scholar
Chin, K.K., Gessert, T.A., and Wei, S-H.: The roles of CU impurity states in CdTe thin film solar cells. In 35th IEEE Photovoltaic Specialists Conference (IEEE: Honolulu, 2010); pp. 001915001918. doi: 10.1109/PVSC.2010.5616379.Google Scholar
Zoth, G., Ridel, F.G., and Schröter, W.: Pairing between fast diffusing donors and Shallow acceptors in p-CdTe. Phys. Status Solidi B 172, 187192 (1992).CrossRefGoogle Scholar