Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T20:45:44.578Z Has data issue: false hasContentIssue false

Local order in YBa2Cu3−yCoyO6+2x studied by anomalous diffuse x-ray scattering

Published online by Cambridge University Press:  03 March 2011

H. Renevier
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3100
X.B. Kan
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3100
J.P. Quintana
Affiliation:
DND Synchrotron Research Center, 1034 University Place, Suite 140, Evanston, Illinois 60201
K.J. Zhang
Affiliation:
James Franck Institute, University of Chicago, Chicago, Illinois 60637
J.B. Cohen
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3100
Get access

Abstract

The local order in a single crystal of YBa2Cu2.53Co0.47O7.13 has been studied with anomalous diffuse x-ray scattering. (For such a Co concentration the compound is nonsuperconducting.) Intensity measurements were carried out at two energies below the Co edge. The difference data could then be expressed in terms of the local structure around a Co atom. The short-range order parameters (α's) indicate that the Co and Cu atoms are nearly randomly distributed on the Cu1 sites. The estimated size of the Co-free “domains” is 5-7 Å. The first neighbor in-plane Co-Co distances are significantly shortened, indicating that the Co atoms are displaced from their average positions. The data also show a significant decrease of the Co-O1 distance, leading to an increase of the Cu2-O1 distance. The lengthening of the Cu2-O1 distance implies a lowering of the Cu2 formal valence. The Co substitution also affects the in-plane Cu2 positions. The present study shows that the Cu-O2 structural coherence is altered on a scale smaller than the superconducting coherence length. As far as the superconductivity is concerned, the Cu2 valence remains one of the most important parameters in determining the superconducting properties of the Co-doped 123 compounds. On the other hand, there is some evidence that in order for superconductivity to occur in this and other doped cuprate compounds, the size of dopant-free regions in the basal plane may have to exceed the superconducting coherence length.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Renevier, H., Hodeau, J. L., Fournier, T., Bordet, P., and Marezio, M., Physica C 172, 183 (1990); Wong-Ng, W., Gayle, F. W., Kaiser, D. L., Watkins, S. F., and Fronczek, F. R., Phys. Rev. B 41, 4220 (1990).CrossRefGoogle Scholar
2Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Phys. Rev. B 36, 5719 (1987); Cava, R. J., Hewat, A. W., Hewat, E. A., Batlogg, B., Marezio, M., Rabe, K. M., Krajewski, J. J., Peck, W. F. Jr., and Rupp, L. W. Jr., Physica C 165, 419 (1990).CrossRefGoogle Scholar
3Jorgensen, J. D., Hinks, D. G., Radaeli, P. G., Pei, S., Lightfoot, P., Drabowski, B., Segre, C. U., and Hunter, B. A., Proc. 3rd Int. Conf. on Materials and Mechanism of Superconductivity High-Temperature Superconductors, Kanazawa, Japan, July 22–26, 1991.Google Scholar
4Jorgensen, J. D., Pei, S., Lightfoot, P., Shi, H., Paulikas, A. P., and Veal, B. W., Physica C 167, 571 (1990).CrossRefGoogle Scholar
5Jiang, X., Wochner, P., Moss, S. C., and Zschack, P., Phys. Rev.Lett. 67, 2167 (1991).CrossRefGoogle Scholar
6Renevier, H., Thesis, Universite J. Fourier, Grenoble, France (1991); Renevier, H., Hodeau, J. L., Marezio, M., and Santoro, A., Physica C 220, 143 (1994).Google Scholar
7Bringley, J. F., Chen, T. M., Averill, B. A., Wong, K. M., and Poon, S. J., Phys. Rev. B 38, 2432 (1988).CrossRefGoogle Scholar
8Sonntag, R., Hohlwein, D., Hoser, A., Prandl, W., Schäfer, W., Kiemel, R., Kemmler-Sack, S., Lösch, S., Schlichenmaier, M., and Hewat, A. W., Physica C 159, 141 (1989).CrossRefGoogle Scholar
9Miceli, P. F., Tarascon, J. M., Greene, L. H., Barboux, P., Rotella, F. J., and Jorgensen, J. D., Phys. Rev. B 37, 5932 (1988).CrossRefGoogle Scholar
10Schmall, W. W., Putnis, A., Salje, E., Freemann, P., Graeme-Barber, A., Jones, R., Singh, K. K., Blunt, J., Edwards, P. P., Loram, J., and Mirza, K., Philos. Mag. Lett. 60, 241 (1989).CrossRefGoogle Scholar
11Renevier, H., Hodeau, J. L., Marezio, M., Lefe'bvre, S., Elkaim, E., and Bessie're, M., Physica C (1994, in press).Google Scholar
12Renevier, H., Hodeau, J. L., Marezio, M., Fontaine, A., Michalowich, A., and Tourillon, G., Phys. Rev. B 47, 11398 (1993).Google Scholar
13Bridges, F., Boyce, J. B., Cleason, T., Geballe, T. H., and Tarascon, J. M., Phys. Rev. B 39, 11603 (1989); Li, G. G., Bridges, F., Boyce, J. B., and Joiner, W. C. H., Phys. Rev B 42, 12110 (1993).CrossRefGoogle Scholar
14Yang, C. Y., Moodenbaugh, A. R., Wang, Y. L., Xu, Y., Heald, S. M., Welch, D. O., Suenaga, M., Fisher, D. A., and Penner-Hahn, J. E., Phys. Rev. B 42, 2231 (1990).CrossRefGoogle Scholar
15Padalia, B. D., Gurman, S. J., Mehta, P. K., and Prakash, O., J. Phys. Condens. Matter. 4, 6865 (1992).CrossRefGoogle Scholar
16Quintana, J. P., J. Appl. Crystallogr. 24, 261 (1991).CrossRefGoogle Scholar
17Schwartz, L. H. and Cohen, J. B., Diffraction from Materials (Springer-Verlag, Berlin, 1987), p. 542.CrossRefGoogle Scholar
18Borie, B. and Sparks, C. J. Jr., Acta Crystallogr. A27, 198 (1971); Hayakawa, M. and Cohen, J. B., Acta Crystallogr. A31, 635 (1975).CrossRefGoogle Scholar
19Georgopoulos, P. and Cohen, J. B., J. Phys. 38 (C-7), 191 (1977).Google Scholar
20Williams, R. O., ORNL Report #4828, Oak Ridge, TN (1972).Google Scholar
21International Tables for Crystallography (Kynoch, Birmingham, England, 1963), Vol. III.Google Scholar
22Cromer, D. T., J. Appl. Crystallogr. 16, 437 (1983).CrossRefGoogle Scholar
23Hoyt, J. J. and de Fontaine, D., J. Appl. Crystallogr. 17, 344 (1985).CrossRefGoogle Scholar
24Zhu, Y., Suenaga, M., and Moodenbaugh, A. R., Ultramicroscopy 37, 341 (1991).CrossRefGoogle Scholar
25Zachariasen, W. H., J. Less-Comm. Met. 62, 1 (1978); Brown, I. D. and Altermatt, D., Acta Crystallogr. B41, 244 (1985).CrossRefGoogle Scholar