Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T18:15:44.787Z Has data issue: false hasContentIssue false

Local epitaxy of YBa2Cu3Ox on polycrystalline Ni measured by x-ray microdiffraction

Published online by Cambridge University Press:  03 March 2011

E.D. Specht*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
A. Goyal
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
W. Liu
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Polychromatic synchrotron x-ray microdiffraction is used to determine the epitaxy of YBa2Cu3Ox (YBCO) films grown on polycrystalline Y.15Zr.85O1.925/CeO2/Y2O3/Ni95W5(Ni) rolling-assisted, biaxially textured substrates (RABiTS). A novel analysis technique is introduced in which the orientation of mosaic films is measured by using a Hough transform to recognize arcs in Laue microdiffraction patterns that correspond to low-index zone axes. While the overall epitaxy is cube-on-cube, grain-by-grain analysis reveals a systematic misorientation of YBCO with respect to Ni: the YBCO [001] rotates toward the direction of the surface normal. The crystal mosaic (for rotation about the rolling direction) measured by a single diffraction pattern sampling a 0.5-μm2 surface area is 0.7° full width at half-maximum for YBCO grown on Ni grains with a low tilt; for more highly tilted grains, the YBCO patterns can no longer be measured, presumably due to the large mosaic. The YBCO mosaic over the entire area of a Ni grain is ∼2.5° and varies with grain size; the mosaic is smaller for larger grains.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y.: In-plane aligned YBa2Cu3O7-x thin-films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
2Wu, X.D., Foltyn, S.R., Arendt, P.N., Blumenthal, W.R., Campbell, I.H., Cotton, J.D., Coulter, J.Y., Hults, W.L., Maley, M.P., Safer, H.F., and Smith, J.L.: Properties of YBa2CuO7-δ thick-films on flexible buffered metallic substrates. Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
3Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., and List, F.A.: Epitaxial YBa2Cu3O7 on biaxially-textured nickel (001): An approach to superconducting tapes with high critical current density. Science 274, 755 (1996).CrossRefGoogle Scholar
4Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., and Sikka, V.K.: High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
5Ma, B., Li, M., Jee, Y.A., Koritala, R.E., Fisher, B.L., and Balachandran, U.: Inclined-substrate deposition of biaxially textured magnesium oxide thin films for YBCO coated conductors. Physica C 366, 270 (2002).CrossRefGoogle Scholar
6Goyal, A., Ren, S.X., Specht, E.D., Kroeger, D.M., Feenstra, R., Norton, D.P., Paranthaman, M., Lee, D.F., and Christen, D.K.: Texture formation and grain boundary networks in rolling assisted biaxially textured substrates and in epitaxial YBCO films on such substrates. Micron 30, 463 (1999).CrossRefGoogle Scholar
7Feldmann, D.M., Larbalestier, D.C., Holesinger, T., Feenstra, R., Gapud, A.A., and Specht, E.D.: Evidence for extensive grain boundary meander and overgrowth of substrate grain boundaries in high critical current density ex situ YBa2Cu3O7–x coated conductors. J. Mater. Res. 20, 2012 (2005).CrossRefGoogle Scholar
8Feldmann, D.M., Holesinger, T.G., Cantoni, C., Feenstra, R., Nelson, N.A., Larbalestier, D.C., Verebelyi, D.T., Li, X., and Rupich, M.: Grain orientations and grain boundary networks of YBa2Cu3O7-δ films deposited by metalorganic and pulsed laser deposition on biaxially textured Ni-W substrates. J. Mater. Res. 21, 923 (2006).CrossRefGoogle Scholar
9Humphreys, F.: Grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36, 3833 (2001).CrossRefGoogle Scholar
10Budai, J.D., Yang, W., Tamura, N., Chung, J.S., Tischler, J.Z., Larson, B.C., Ice, G.E., Park, C., and Norton, D.P.: X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates. Nat. Mater. 2, 487 (2003).CrossRefGoogle ScholarPubMed
11Chung, J.S. and Ice, G.E.: Automated indexing for texture and strain measurement with broad-bandpass x-ray microbeams. J. Appl. Phys. 86, 5249 (1999).CrossRefGoogle Scholar
12Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Valek, B., Bravman, J.C., Spolenak, R., Brown, W.L., Marieb, T., Fujimoto, H., Batterman, B.W., and Patel, J.R.: High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron x-ray diffraction. Appl. Phys. Lett. 80, 3724 (2002).CrossRefGoogle Scholar
13Goyal, A., Paranthaman, M.P., and Schoop, U.: The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29, 552 (2004).CrossRefGoogle Scholar
14Rupich, M.W., Verebelyi, D.T., Zhang, W., Kodenkandath, T., and Li, X.P.: Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29, 572 (2004).CrossRefGoogle Scholar
15Ice, G.E., Larson, B.C., Yang, W., Budai, J.D., Tischler, J.Z., Pang, J.W.L., Barabash, R.I., and Liu, W.: Polychromatic x-ray microdiffraction studies of mesoscale structure and dynamics. J. Synchrotron Radiat. 12, 155 (2005).CrossRefGoogle ScholarPubMed
16Lassen, N.C.K.: Automatic localisation of electron backscattering pattern bands from Hough transform. Mater. Sci. Technol. 12, 837 (1996).CrossRefGoogle Scholar
17Duda, R.O. and Hart, P.E.: Use of Hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11 (1972).CrossRefGoogle Scholar
18Specht, E.D., Goyal, A., Lee, D.F., List, F.A., Kroeger, D.M., Paranthaman, M., Williams, R.K., and Christen, D.K.: Cube-textured nickel substrates for high-temperature superconductors. Supercond. Sci. Technol. 11, 945 (1998).CrossRefGoogle Scholar
19Cole, B.F., Liang, G.C., Newman, N., Char, K., and Zaharchuk, G.: Large-area YBa2Cu3O7-δ thin-films on sapphire for microwave applications. Appl. Phys. Lett. 61, 1727 (1992).CrossRefGoogle Scholar
20Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Jensen, D.J., Kassner, M.E., King, W.E., McNelley, T.R., McQueen, H.J., and Rollett, A.D.: Current issues in recrystallization: A review. Mater. Sci. Eng., A 238, 219 (1997).CrossRefGoogle Scholar
21Goyal, A., Heatherly, L., and Paranthaman, M.: RABiTS substrates research and development, in Superconductivity for Electric Systems 2005 Annual Peer Review (Energetics, Washington, DC, 2005), http://www.energetics.com/sup05_presentations.Google Scholar
22Liu, W.J., Ice, G.E., Tischler, J.Z., Khounsary, A., Liu, C., Assoufid, L., and Macrander, A.T.: Short focal length Kirkpatrick-Baez mirrors for a hard x-ray nanoprobe. Rev. Sci. Instrum. 76, 113701 (2005).CrossRefGoogle Scholar
23Coan, P., Peterzol, A., Fiedler, S., Ponchut, C., Labiche, J.C., and Bravin, A.: Evaluation of imaging performance of a taper optics CCD “FreLoN” camera designed for medical imaging. J. Synchrotron Radiat. 13, 260 (2006).CrossRefGoogle ScholarPubMed