Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T22:58:26.610Z Has data issue: false hasContentIssue false

Local dielectric measurements of BaTiO3–CoFe2O4 nanocomposites through microwave microscopy

Published online by Cambridge University Press:  03 March 2011

Yi Qi
Affiliation:
Materials Research Science and Engineering Center, Departments of Physics and Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
Steven M. Anlage*
Affiliation:
Materials Research Science and Engineering Center, Departments of Physics and Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
H. Zheng
Affiliation:
Department of Materials Science and Engineering, University of California at Berkeley, Berkley, California 94720
R. Ramesh
Affiliation:
Department of Materials Science and Engineering, University of California at Berkeley, Berkley, California 94720
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report on linear and nonlinear dielectric property measurements of BaTiO3–CoFe2O4 (BTO–CFO) ferroelectromagnetic nanocomposites and pure BaTiO3 and CoFe2O4 samples with scanning near-field microwave microscopy. The permitivity scanning image with spatial resolution on the micrometer scale shows that the nanocomposites have a very uniform quality with an effective dielectric constant ɛr = 140 ± 6.4 at 3.8 GHz and room temperature. The temperature dependence of dielectric permittivity shows that the Curie temperature of pure BTO was shifted by the clamping effect of the MgO substrate, whereas the Curie temperature shift of the BTO ferroelectric phase in BTO–CFO composites is less pronounced, and if it exists at all, would be mainly caused by the CFO. Nonlinear dielectric measurements of BTO–CFO show good ferroelectric properties from the BTO.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wood, V.E. and Austin, A.E.: Possible applications for magnetoelectric materials. Int. J. Magn. 5, 303 (1974).Google Scholar
2Smolenskii, G.A. and Chupis, I.E.: Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982).Google Scholar
3Al’shin, B.I. and Astrov, DN: Magnetoelectric effect in titanium oxide Ti2O3. Sov. Phys. JETP 17, 809 (1963).Google Scholar
4Wan, J.G., Liu, J-M., Chand, H.L.W., Choy, C.L., Wang, G.H., and Nan, C.W.: Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites. J. Appl. Phys. 93, 9916 (2003).Google Scholar
5Chang, K-S., Aronova, M.A., Lin, C-L., Murakami, M., Yu, M-H., Hattrick-Simpers, J., Famodu, O.O., Lee, S.Y., Ramesh, R., Wuttig, M., Takeuchi, I., Gao, C., and Bendersky, L.A.: Exploration of artificial multiferroic thin film heterostructures using composition spreads. Appl. Phys. Lett. 84, 3091 (2004).CrossRefGoogle Scholar
6Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004).Google Scholar
7Steinhauer, D.E., Vlahacos, C.P., Wellswood, F.C., and Anlage, S.M.: Quantitative imaging of dielectric permittivity and tunability with a near field scanning microwave microscope. Rev. Sci. Instrum. 71, 2751 (2000).Google Scholar
8Altshuler, H.M.: Dielectric constant, in Handbook of Microwave Measurements II edited by Sucher, M. and Fox, J. (Polytechnic Institute of Brooklyn, Brooklyn, NY, 1963) p. 532.Google Scholar
9Imtiaz, A., Pollak, M., Anlage, S.M., Barry, J.D., and Melngailis, J.: Near-field microwave microscopy on nanometer length scales. J. Appl. Phys. 97, 044302 (2005).Google Scholar
10Imtiaz, A. and Steven, M.: Anlage, Effect of tip-geometry on contrast and spatial-resolution of the near-field microwave microscope. J. Appl. Phys. 100, 044304 (2006).Google Scholar
11Steinhauer, D.E., Vlahacos, C.P., Wellstood, F.C., Anlage, S.M., Canedy, C., Ramesh, R., Stanishevsky, A., and Melngailis, J.: Imaging of microwave permittivity, tunability, and damage recovery in (Ba,Sr)TiO3 thin films. Appl. Phys. Lett. 75, 3180 (1999).Google Scholar
12Anlage, S.M., Talanov, V.V., and Schwartz, A.R.: Principles of near-field microwave microscopy, section 4.7, in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale edited by Kalinin, S. and Gruverman, A. (Springer, New York, 2006), p. 207.Google Scholar
13Nan, C-W.: Magneto-electric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082 (1994).CrossRefGoogle Scholar
14Hoerman, B.H., Ford, G.M., Kaufmann, L.D., and Wessels, B.W.: Dielectric properties of epitaxial BaTiO3 thin films. Appl. Phys. Lett. 73, 16 (1998).Google Scholar
15Sakayori, K., Matsui, Y., and Abe, H.: Curie temperature of BaTiO3. Japan. J Appl. Phys. Part 1 34, 5443 (1995).CrossRefGoogle Scholar
16Sinnamon, L.J., Bowman, R.M., and Gregg, J.M.: Thickness-induced stabilization of ferroelectricity in SrRuO3/Ba0.5Sr0.5TiO3/Au thin film capacitors. Appl. Phys. Lett. 81, 889 (2002).Google Scholar
17Parker, C.B., Maria, J-P., and Kingon, A.I.: Temperature and thickness dependent permittivity of (Ba,Sr)TiO3 thin films. Appl. Phys. Lett. 81, 340 (2002).CrossRefGoogle Scholar
18Miller, S.L., Nasby, R.D., Schwank, J.R., Rodgers, M.S., and Dressendorfer, P.V.: Device modeling of ferroelectric capacitors. J. Appl. Phys. 68, 6463 (1990).CrossRefGoogle Scholar
19Miao, J., Yang, H., Hao, W., Yuan, J., Xu, B., Qiu, X.Q., Cao, L.X., and Zhao, B.R.: Temperature dependence of the ferroelectric and dielectric properties of the BST/LSMO heterostructure. J. Phys. D: Appl. Phys. 38, 5 (2005).Google Scholar