Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T13:10:07.808Z Has data issue: false hasContentIssue false

Liquid-phase sintering and chemical inhomogeneity in the BaTiO3–BaCO3–LiF system

Published online by Cambridge University Press:  31 January 2011

Sea-Fue Wang
Affiliation:
Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan, Republic of China
Thomas C. K. Yang
Affiliation:
Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan, Republic of China
Wayne Huebner
Affiliation:
Ceramic Engineering Department, University of Missouri—Rolla, Rolla, Missouri 65401
Jinn P. Chu
Affiliation:
National Taiwan Ocean University, Institute of Materials Engineering, Keelung, Taiwan, Republic of China
Get access

Abstract

An ongoing goal of multilayer capacitor research is to lower the firing temperature of the dielectric. This paper gives a detailed study of sintering BaTiO3 with LiF flux, which lowers the firing temperature through liquid-phase sintering. A detailed set of experiments is discussed concerning microstructural evolution and corresponding dielectric properties under a number of processing variables, including amount of LiF, sintering temperature, and particle size. Different scales of chemical inhomogeneity were observed in this system, which reflect two underlying mechanisms: solution reprecipitation with limited grain growth at low temperatures, which resulted in distinct core–shell structures, and flux volatility, which gave rise to microscopic chemical inhomogeneity at higher sintering temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Payne, D.A., in Tailoring Multiphase and Composite Ceramics, edited by Tressler, R.E., Messing, G.L., Pantano, C.P., and Newnham, R.E. (Plenum Press, New York, 1986), pp. 413431.CrossRefGoogle Scholar
2.Goodman, G., Ceramic Capacitor Materials, in Ceramic Materials for Electronics, edited by Buchanan, R.C. (Marcel Dekker, New York, 1986), pp. 79138.Google Scholar
3.Kahn, M., Burks, D.P., Bum, I., and Schulze, W.A., in Electronics Ceramics, edited by Levinson, L.M. (Marcel Dekker, New York, 1988), pp. 191274.Google Scholar
4.Kolar, D., in Chemistry of Electronic Ceramic Materials (National Institute of Standards and Technology Special Publication 804, Washington, DC, 1991), pp. 319.Google Scholar
5.Hennings, D. and Rosenstein, G., J. Am. Ceram. Soc. 67, 249 (1985).CrossRefGoogle Scholar
6.Rawal, B.S., Kahn, M., and Buessem, W.R., in Advances in Ceramics, Grain Boundary Phenomena in Electronic Ceramics, edited by Levinson, L.M. (The American Ceramic Society, Columbus, OH, 1981), Vol. 1.Google Scholar
7.Lu, H.Y., Bow, J.S., and Deng, W.H., J. Am. Ceram. Soc. 73, 3562 (1990).CrossRefGoogle Scholar
8.Kahn, M., J. Am. Ceram. Soc. 54, 455 (1971).CrossRefGoogle Scholar
9.Armstrong, T.R. and Buchanan, R.C., J. Am. Ceram. Soc. 73, 1268 (1990).CrossRefGoogle Scholar
10.Zhou, Z., Zhang, W., Wu, Y., and Zhang, R., Ferroelectrics 101, 55 (1990).Google Scholar
11.Burn, I., J. Mater. Sci. 17, 1398 (1982).CrossRefGoogle Scholar
12.Payne, D.A. and Park, S.M., U.S. Patent No. 4 218 723 (1980).Google Scholar
13.Maher, G.H., U.S. Patent No. 3 885 941 (1975).CrossRefGoogle Scholar
14.Maher, G.H., U.S. Patent No. 4 266 265 (1981).CrossRefGoogle Scholar
15.Chowdry, K.R. and Subbarao, E.C., Ferroelectrics 37, 689 (1981).CrossRefGoogle Scholar
16.Kumar, D., Sakharkar, P.K., and Pandey, L., J. Mater. Sci. Lett. 8, 652 (1988).CrossRefGoogle Scholar
17.Hennings, D., Ber. Dt. Keram. Ges. 55, 359 (1978).Google Scholar
18.Benecke, M.W., Olson, N.E., and Pask, J.A., J. Am. Ceram. Soc. 50, 365 (1967).CrossRefGoogle Scholar
19.Anderson, H.U. and Proudien, M.C., in Sintering and Heterogeneous Catalysis, edited by Kuczynski, G.C. (Plenum Press, New York, 1984), pp. 281292.Google Scholar
20.Chen, G.F. and Fu, S.L., J. Mater. Sci. 25, 424 (1990).CrossRefGoogle Scholar
21.Laurent, J., Desgardin, G., and Raveau, B., J. Mater. Sci. 23, 4481 (1988).CrossRefGoogle Scholar
22.Desgardin, G., Raveau, B., and Haussonne, J.M., in High Tech Ceramics, edited by Vincenzini, P. (Elsevier Science, Amsterdam, The Netherlands, 1987), pp. 15031514.Google Scholar
23.Walker, B.E., Rice, R.W., Pohanka, R.C., and Spann, J.R., Am. Ceram. Soc. Bull. 55, 274 (1976).Google Scholar
24.Amin, P.B., Anderson, H.U., and Hodgkins, C.E., U.S. Patent No. 4 082 906 (1978).Google Scholar
25.Anderson, H.U., Atteberry, K., Aurin, R., and Hodgkins, C., presented at the 81st Annual Meeting of the American Ceramic Society, Cincinnati, OH, May 1, 1979.Google Scholar
26.Haussonne, J.M., Desgardin, G., Bajolet, P.H., and Raveau, B., J. Am. Ceram. Soc. 66, 801 (1983).CrossRefGoogle Scholar
27.Tolino, D.A. and Blum, J.B., J. Am. Ceram. Soc. 68, C292 (1985).CrossRefGoogle Scholar
28.Desgardin, G., Mey, I., and Raveau, B., Am. Ceram. Soc. Bull. 64, 563 (1985).Google Scholar
29.Guha, J.P. and Anderson, H.U., J. Am. Ceram. Soc. 69, C193 (1986).Google Scholar
30.Potten, A., Ravez, J., and Bonnet, J.P., in High Tech Ceramics, edited by Vincenzini, P. (Elsevier Science, Amsterdam, The Netherlands, 1987), pp. 15251532.Google Scholar
31.Lin, J.N. and Wu, T.B., J. Am. Ceram. Soc. 72, 1709 (1989).CrossRefGoogle Scholar
32.Randall, C.A., Wang, S.F., Laubscher, D., Dougherty, J.P. and Huebner, W., J. Mater. Res. 8, 871 (1993).CrossRefGoogle Scholar
33.Wang, S.F., Ph.D. Dissertation, Pennsylvania State University (1991).Google Scholar
34.Hennings, D., in Science of Ceramics (Ceramurgia s.r.l., Faenza, Italy, 1984), Vol. 12, pp. 405409.Google Scholar
35.CRC Handbook of Chemistry and Physics, edited by Nest, R.C. (CRC Press, Boca Raton, FL, 1988).Google Scholar
36.Mack, E., Osterhof, G.G., and Kraner, H.M., J. Am. Chem. Soc. 45, 617 (1921).CrossRefGoogle Scholar
37.Endo, T., Kobayashi, T., Sato, T., and Shimada, M., J. Mater. Sci. 25, 619 (1990).CrossRefGoogle Scholar