Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T14:01:08.989Z Has data issue: false hasContentIssue false

Liquid droplet dynamics and complex morphologies in vapor–liquid–solid nanowire growth

Published online by Cambridge University Press:  05 July 2011

E.J. Schwalbach
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
S.H. Davis
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208
P.W. Voorhees*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
D. Wheeler
Affiliation:
Metallurgy Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J.A. Warren
Affiliation:
Metallurgy Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The morphology of semiconducting nanowires, including kinked and branched wires, must be controlled in order to produce functional devices. Here, we describe some of the experimental and theoretical work involving complex morphologies of Au-catalyzed Si nanowires grown using the vapor–liquid–solid technique. Although there is a broad parameter space to explore, experiments have highlighted the importance of the precursor and impurity partial pressures on kinking behavior. Theoretical and modeling work has indicated that the stability of and transitions in droplet configuration are important for growth direction changes that can lead to complex morphologies. We describe recent phase-field simulations of nanowire growth that address the dynamics of liquid droplets during vapor–liquid–solid growth, as well as the implications of these results for the formation of wires with complex morphology.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nam, S., Jiang, X., Xiong, Q., Ham, D., and Lieber, C.M.: Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. 106, 21035 (2009).CrossRefGoogle ScholarPubMed
2.Bierman, M.J. and Jin, S.: Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2, 1050 (2009).CrossRefGoogle Scholar
3.Kelzenberg, M.D., Boettcher, S.W., Petykiewicz, J.A., Turner-Evans, D.B., Putnam, M.C., Warren, E.L., Spurgeon, J.M., Briggs, R.M., Lewis, N.S., and Atwater, H.A.: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239 (2010).CrossRefGoogle Scholar
4.Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol. 3, 31 (2008).CrossRefGoogle ScholarPubMed
5.Cui, Y., Wei, Q., Park, H., and Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).CrossRefGoogle ScholarPubMed
6.Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., and Lieber, C.M.: Electrical detection of single viruses. Proc. Natl. Acad. Sci. 101, 14017 (2004).CrossRefGoogle ScholarPubMed
7.Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., and Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294 (2005).CrossRefGoogle ScholarPubMed
8.Kim, W., Ng, J.K., Kunitake, M.E., Conklin, B.R., and Yang, P.: Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228 (2007).CrossRefGoogle ScholarPubMed
9.Tian, B., Cohen-Karni, T., Qing, Q., Duan, X., Xie, P., and Lieber, C.M.: Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830 (2010).CrossRefGoogle ScholarPubMed
10.Wagner, R.S. and Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
11.Wagner, R.S. and Doherty, C.J.: Mechanism of branching and kinking during VLS crystal growth. J. Electrochem. Soc. 115, 93 (1968).CrossRefGoogle Scholar
12.Tian, B., Xie, P., Kempa, T.J., Bell, D.C., and Lieber, C.: Single-crystalline kinked semiconductor nanowire superstructures. Nature Nanotechnol. 4, 824 (2009).CrossRefGoogle ScholarPubMed
13.Bootsma, G.A. and Gassen, H.J.: Quantitative study on growth of silicon whiskers from silane and germanium whiskers from germane. J. Cryst. Growth 10, 223 (1971).CrossRefGoogle Scholar
14.Westwater, J., Gosain, D.P., Tomiya, S., Usui, S., and Ruda, H.: Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B 15, 554 (1997).CrossRefGoogle Scholar
15.Hannon, J.B., Kodambaka, S., Ross, F.M., and Tromp, R.M.: The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69 (2006).CrossRefGoogle Scholar
16.Kodambaka, S., Hannon, J.B., Tromp, R.M., and Ross, F.M.: Control of Si nanowire growth by oxygen. Nano Lett. 6, 1292 (2006).CrossRefGoogle ScholarPubMed
17.Kawashima, T., Mizutani, T., Nakagawa, T., Torii, H., Saitoh, T., Komori, K., and Fujii, M.: Control of surface migration of gold particles on Si nanowires. Nano Lett. 8, 362 (2008).CrossRefGoogle ScholarPubMed
18.Lugstein, A., Steinmair, M., Hyun, Y.J., Hauer, G., Pongratz, P., and Bertagnolli, E.: Pressure-induced orientation control of the growth of epitaxial silicon nanowires. Nano Lett. 8, 2310 (2008).CrossRefGoogle ScholarPubMed
19.Madras, P., Dailey, E., and Drucker, J.: Kinetically induced kinking of vapor–liquid–solid grown epitaxial Si nanowires. Nano Lett. 9, 3826 (2009).CrossRefGoogle ScholarPubMed
20.Madras, P., Dailey, E., and Drucker, J.: Spreading of liquid AuSi on vapor–liquid solid–grown Si nanowires. Nano Lett. 10, 1759 (2010).CrossRefGoogle ScholarPubMed
21.Dailey, E., Madras, P., and Drucker, J.: Au on vapor–liquid–solid grown Si nanowires: Spreading of liquid AuSi from the catalytic seed. J. Appl. Phys. 108, 064320 (2010).CrossRefGoogle Scholar
22.Dailey, E., Madras, P., and Drucker, J.: Composition and growth direction control of epitaxial vapor–liquid–solid-grown SiGe nanowires. Appl. Phys. Lett. 97, 143106 (2010).CrossRefGoogle Scholar
23.Schwarz, K.W. and Tersoff, J.: From droplets to nanowires: Dynamics of vapor–liquid–solid growth. Phys. Rev. Lett. 102, 206101 (2009).CrossRefGoogle ScholarPubMed
24.Schwarz, K.W. and Tersoff, J.: Elementary processes in nanowire growth. Nano Lett. 11, 316 (2011).CrossRefGoogle ScholarPubMed
25.Roper, S.M., Anderson, A.M., Davis, S.H., and Voorhees, P.W.: Radius selection and droplet unpinning in vapor–liquid–solid-grown nanowires. J. Appl. Phys. 107, 114320 (2010).CrossRefGoogle Scholar
26.McCallum, M.S., Voorhees, P.W., Miksis, M.J., Davis, S.H., and Wong, H.: Capillary instabilities in solid thin films: Lines. J. Appl. Phys. 79, 7604 (1996).CrossRefGoogle Scholar
27.Schmidt, V., Senz, S., and Gösele, U.: The shape of epitaxially grown silicon nanowires and the influence of line tension. Appl. Phys. A 445 (2005).CrossRefGoogle Scholar
28.Roper, S.M., Davis, S.H., Norris, S.A., Golovin, A.A., Voorhees, P.W., and Weiss, M.: Steady growth of nanowires via the vapor–liquid–solid method. J. Appl. Phys. 102, 034304 (2007).CrossRefGoogle Scholar
29.Dussan, E.B., , V: On the spreading of liquids on solid surfaces: Static and dynamic contact lines. Annu. Rev. of Fluid Mech. 11, 371 (1979).CrossRefGoogle Scholar
30.de Gennes, P.G.: Wetting—Statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
31.Blake, T.D.: The physics of moving wetting lines. J. Colloid Interface Sci. 299, 1 (2006).CrossRefGoogle ScholarPubMed
32.Rosenblat, S. and Davis, S.H.: How do liquid drops spread on solids? In Frontiers in Fluid Mechanics (Davis, S.H. and Lumley, J.L., eds.; Springer–Verlag, New York, 1985).Google Scholar
33.Blake, T.D. and Haynes, J.M.: Kinetics of Liquid/Liquid displacement. J. Colloid and Interface Sci. 30, 421 (1969).CrossRefGoogle Scholar
34.Blake, T.D., Clarke, A., DeConinck, J., and deRuijter, M.: Contact angle relaxation during droplet spreading: Comparison between molecular kinetic theory and molecular dynamics. Langmuir 13, 2164 (1997).CrossRefGoogle Scholar
35.Hoffman, R.L.: A study of the advancing interface: I. Interface shape in liquid–gas systems. J. Colloid Interface Sci. 50, 228 (1975).CrossRefGoogle Scholar
36.Hoffman, R.L.: A study of the advancing interface: II. Theoretical prediction of the dynamic contact angle in liquid–gas systems. J. Colloid Interface Sci. 94, 470 (1983).CrossRefGoogle Scholar
37.Schiaffino, S. and Sonin, A.A.: Molten droplet deposition and solidification at low Weber numbers. Phys. Fluids 9, 3172 (1997).CrossRefGoogle Scholar
38.Wheeler, D., Warren, J.A., and Boettinger, W.J.: Modeling the early stages of reactive wetting. Phys. Rev. E 82, 051601 (2010).CrossRefGoogle ScholarPubMed
39.Boettinger, W.J., Warren, J.A., Beckermann, C., and Karma, A.: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32, 163 (2002).CrossRefGoogle Scholar
40.Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113 (2002).CrossRefGoogle Scholar
41.Seppecher, P.: Moving contact lines in the Cahn–Hilliard theory. Int. J. Eng. Sci. 34, 977 (1996).CrossRefGoogle Scholar
42.Ding, H. and Spelt, P.D.M.: Inertial effects in droplet spreading: A comparison between diffuse-interface and level-set simulations. J. Fluid Mech. 576, 1 (2007).CrossRefGoogle Scholar
43.Ding, H., Gilani, M.N.H., and Spelt, P.D.M.: Sliding, pinch-off and detachment of a droplet on a wall in shear flow. J. Fluid Mech. 644, 217 (2010).CrossRefGoogle Scholar
44.Villanueva, W., Gronhagen, K., Amberg, G., and Agren, J.: Multicomponent and multiphase modeling and simulation of reactive wetting. Phys. Rev. E 77, 056313 (2008).CrossRefGoogle ScholarPubMed
45.Villanueva, W., Boettinger, W.J., Warren, J.A., and Amberg, G.: Effect of phase change and solute diffusion on spreading on a dissolving substrate. Acta Mater. 57, 6022 (2009).CrossRefGoogle Scholar
46.Karma, A. and Rappel, W.: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53, R3017 (1996).CrossRefGoogle ScholarPubMed
47.Sekerka, R.F. and Bi, Z.: Phase field model of multicomponent alloy solidification with hydrodynamics. In Interfaces for the 21st Century: New Research Directions in Fluid Mechanics and Materials Science (McFadden, G.B., ed.; Imperial College Press, London, 2002).Google Scholar
48.Sekerka, R.F.: Irreversible thermodynamic basis of phase field models. Phil. Mag. 91, 3 (2011).CrossRefGoogle Scholar
49.Guyer, J.E., Wheeler, D., and Warren, J.A.: FiPy: Partial differential equations with Python. Comput. Sci. Eng. 11, 6 (2009).CrossRefGoogle Scholar
50.Adhikari, H., Marshall, A.F., Goldthorpe, I.A., Chidsey, C.E.D., and McIntyre, P.C.: Metastability of Au-Ge liquid nanocatalysts: Ge vapor–liquid–solid nanowire growth far below the bulk eutectic temperature. ACS Nano. 1, 415 (2007).CrossRefGoogle ScholarPubMed
51.Schwalbach, E.J. and Voorhees, P.W.: Phase equilibrium and nucleation in VLS-grown nanowires. Nano Lett. 8, 3739 (2008).CrossRefGoogle ScholarPubMed
52.Kim, B.J., Tersoff, J., Wen, C.Y., Reuter, M.C., Stach, E.A., and Ross, F.M.: Determination of size effects during the phase transition of a nanoscale Au-Si eutectic. Phys. Rev. Lett. 103, 155701 (2009).CrossRefGoogle ScholarPubMed
53.Iida, T. and Guthrie, R.: The Physical Properties of Liquid Metals (Oxford University Press, New York, 1993).Google Scholar
54.Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood Cliffs, NJ, 1969).Google Scholar
55.Dussan V, E.B. and Davis, S.H.: Motion of a fluid-fluid interface along a solid-surface. J. Fluid Mech. 65, 71 (1974).CrossRefGoogle Scholar
56.Schwalbach, E.J.: Northwestern University, Evanston, IL. Unpublished results, 2011.Google Scholar
57.Kobayashi, R.: Modeling and numerical simulations of dendritic crystal-growth. Phys. D 63, 410 (1993).CrossRefGoogle Scholar
58.Wheeler, A.A. and McFadden, G.B.: On the notion of a ξ-vector and a stress tensor for a general class of anisotropic diffuse interface models. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 453, 1611 (1997).CrossRefGoogle Scholar