Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T06:35:39.291Z Has data issue: false hasContentIssue false

Light harvesting in dendrimer materials: Designer photophysics and electrodynamics

Published online by Cambridge University Press:  25 January 2012

David L. Andrews*
Affiliation:
School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Multichromophoric dendrimers are increasingly being considered for solar energy systems. To design materials with suitably efficient photon collection demands a thorough understanding of crucial photophysical conditions and electrodynamic mechanisms, many of which prove to emulate photosynthetic systems. Key parameters include the chromophore absorption properties, the generation, branching and folding of the dendrimer, and the presence of a spectroscopic gradient. Driving excitation towards a trap, resonance energy transfer favors migration between nearest neighbor chromophores. In modeling the progress of excitation from antenna chromophores towards the trap, a propensity matrix method has broad applicability, giving physical insights of generic validity. Calculations on specific dendrimers are best served by quantum chemistry models; again, links with photobiological systems can be discerned. Two important optically nonlinear features are cooperative energy pooling, and two-photon energy transfer. Branch multiplicity and the polar or polarizable nature of the chromophores also play important roles in determining energy harvesting characteristics.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jacobson, M.Z.: Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2, 148173 (2009) [doi: 10.1039/B809990C].CrossRefGoogle Scholar
2.Andrews, D.L., Curutchet, C., and Scholes, G.D.: Resonance energy transfer: Beyond the Limits. Laser Photonics Rev. 5, 114123 (2011) [doi: 10.1002/lpor.201000004].CrossRefGoogle Scholar
3.Beljonne, D., Curutchet, C., Scholes, G.D., and Silbey, R.J.: Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113, 65836599 (2009) [doi: 10.1021/jp900708f].CrossRefGoogle ScholarPubMed
4.Cheng, Y.C. and Fleming, G.R.: Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60, 241262 (2009) [doi: 10.1146/annurev.physchem.040808.090259].CrossRefGoogle ScholarPubMed
5.Andrews, D.L.: Energy Harvesting Materials (World Scientific, New Jersey, 2005).CrossRefGoogle Scholar
6.Dykes, G.M.: Dendrimers: A review of their appeal and applications. J. Chem. Technol. Biotechnol. 76, 903918 (2001) [doi: 10.1002/jctb.464].CrossRefGoogle Scholar
7.Adronov, A. and Fréchet, J.M.J.: Light-harvesting dendrimers. Chem. Commun. 17011710 (2000) [doi:10.1039/b005993p].CrossRefGoogle Scholar
8.Archut, A. and Vögtle, G.: Functional cascade molecules. Chem. Soc. Rev. 27, 233240 (1998) [doi:10.1039/a827233z].CrossRefGoogle Scholar
9.Minami, T., Tretiak, S., Chernyak, V., and Mukamel, S.: Frenkel-exciton Hamiltonian for dendrimeric nanostar. J. Lumin. 8789, 115118 (2000) [doi:10.1016/S0022-2313(99)00242-2].CrossRefGoogle Scholar
10.Balzani, V., Ceroni, P., Maestri, M., and Vincinelli, V.: Light-harvesting dendrimers. Curr. Opin. Chem. Biol. 7, 657665 (2003) [doi:10.1016/j.cbpa.2003.10.001].CrossRefGoogle ScholarPubMed
11.Ranasinghe, M.I., Varnavski, O.P., Pawlas, J., Hauck, S.I., Louie, J., Hartwig, J.F., and Goodson, T. III: Femtosecond excitation energy transport in triarylamine dendrimers. J. Am. Chem. Soc. 124, 65206521 (2002) [doi:10.1021/ja025505z].CrossRefGoogle ScholarPubMed
12.Katan, C., Terenziani, F., Mongin, O., Werts, M.H.V., Porres, L., Pons, T., Mertz, J., Tretiak, S., and Blanchard-Desce, M.: Effects of (multi)branching of dipolar chromophores on photophysical properties and two-photon absorption. J. Phys. Chem. A 109, 30243037 (2005) [doi: 10.1021/jp044193e].CrossRefGoogle ScholarPubMed
13.Burn, P.L., Lo, S.C., and Samuel, I.D.W.: The development of light-emitting dendrimers for displays. Adv. Mater. 19, 16751688 (2007) [doi: 10.1002/adma.200601592].CrossRefGoogle Scholar
14.Paulo, P.M.R., Lopes, J.N.C., and Costa, S.M.B.: Molecular dynamics simulations of charged dendrimers: Low-to-intermediate half-generation PAMAMs. J. Phys. Chem. B 111, 1065110664 (2007) [doi: 10.1021/jp072211x].CrossRefGoogle ScholarPubMed
15.Badaeva, E., Harpham, M.R., Guda, R., Suzer, O., Ma, C.Q., Bauerle, P., Goodson, T., and Tretiak, S.: Excited-state structure of oligothiophene dendrimers: Computational and experimental study. J. Phys. Chem. B 114, 1580815817 (2010) [doi: 10.1021/jp109624d].CrossRefGoogle ScholarPubMed
16.Gao, J.K., Cui, Y.J., Yu, J.C., Lin, W.X., Wang, Z.Y., and Qian, G.D.: Enhancement of nonlinear optical activity in new six-branched dendritic dipolar chromophore. J. Mater. Chem. 21, 31973203 (2011) [doi: 10.1039/c0jm03367g].CrossRefGoogle Scholar
17.Palma, J.L., Atas, E., Hardison, L., Marder, T.B., Collings, J.C., Beeby, A., Melinger, J.S., Krause, J.L., Kleiman, V.D., and Roitberg, A.E.: Electronic spectra of the nanostar dendrimer: Theory and experiment. J. Phys. Chem. C 114, 2070220712 (2010) [doi: 10.1021/jp1062918].CrossRefGoogle Scholar
18.Balzani, V. and Vögtle, F.: Dendrimers as luminescent hosts for metal cations and organic molecules. C.R. Chim. 6, 867872 (2003).CrossRefGoogle Scholar
19.Goodson, T., Varnavski, O., and Wang, Y.: Optical properties and applications of dendrimer-metal nanocomposites. Int. Rev. Phys. Chem. 23, 109150 (2004) [doi: 10.1080/01442350310001628875].CrossRefGoogle Scholar
20.Larsen, J., Puntoriero, F., Pascher, T., McClenaghan, N., Campagna, S., Åkesson, E., and Sundström, V.: Extending the light-harvesting properties of transition-metal dendrimers. ChemPhysChem 8, 26432651 (2007) [doi:10.1002/cphc.200700539].CrossRefGoogle ScholarPubMed
21.Giansante, C., Ceroni, P., Balzani, V., and Vögtle, F.: Self-assembly of a light-harvesting antenna formed by a dendrimer, a RuII complex, and a NdIII ion. Angew. Chem. Int. Ed. 47, 54225425 (2008) [doi:10.1002/anie.200801334].CrossRefGoogle Scholar
22.Kralj, M. and Pavelic, K.: Medicine on a small scale. EMBO Rep. 4, 10081012 (2003).CrossRefGoogle ScholarPubMed
23.Ball, P.: Natural strategies for the molecular engineer. Nanotechnology 13, R15R28 (2002).CrossRefGoogle Scholar
24.Andrews, D.L.: Optical energy harvesting materials, in Introduction to Complex Mediums for Optics and Electromagnetics, edited by Weiglhofer, W.S. and Lakhtakia, A. (SPIE, Bellingham, WA, 2003), pp. 141163.CrossRefGoogle Scholar
25.Andrews, D.L.: Energy harvesting: A review of the interplay between structure and mechanism. J. Nanophotonics 2, 022502 (2008) [doi: 10.1117/1.2976172].CrossRefGoogle Scholar
26.Shortreed, M.R., Swallen, S.F., Shi, Z.Y., Tan, W.H., Xu, Z.F., Devadoss, C., Moore, J.S., and Kopelman, R.: Directed energy transfer funnels in dendrimeric antenna supermolecules. J. Phys. Chem. B 101, 63186322 (1997) [doi:10.1021/jp9705986].CrossRefGoogle Scholar
27.Bar-Haim, A. and Klafter, J.: Dendrimers as light-harvesting antennae. J. Lumin. 7677, 197200 (1998) [doi:10.1016/S0022-2313(97)00150-6].CrossRefGoogle Scholar
28.Bar-Haim, A. and Klafter, J.: Geometric versus energetic competition in light harvesting by dendrimers. J. Phys. Chem. B 102, 16621664 (1998) [doi:10.1021/jp980174r].CrossRefGoogle Scholar
29.Swallen, S.F., Shi, Z.Y., Tan, W., Xu, Z., Moore, J.S., and Kopelman, R.: Exciton localisation hierarchy and directed energy transfer in conjugated linear aromatic chains and dendrimeric supermolecules. J. Lumin. 7677, 193196 (1998) [doi:10.1016/S0022-2313(97)00149-X].CrossRefGoogle Scholar
30.van Patten, P.G., Shreve, A.P., Lindsey, J.S., and Donohoe, R.J.: Energy-transfer modeling for the rational design of multiporphyrin light-harvesting arrays. J. Phys. Chem. B 102, 42094216 (1998) [doi:10.1021/jp972304m].CrossRefGoogle Scholar
31.Gust, D., Moore, T.A. and Moore, A.N.: Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 18901898 (2009).CrossRefGoogle ScholarPubMed
32.Guldi, D.M. and Martin, N.: Functionalized fullerenes: Synthesis and functions in Comprehensive Nanoscience and Technology, Vol. 5, edited by Andrews, D.L., Scholes, G.D., and Wiederrecht, G.P. (Academic, San Diego, CA, 2011), pp. 379398.CrossRefGoogle Scholar
33.Hahn, U., Gorka, M., Vögtle, F., Vicinelle, V., Ceroni, P., Maestri, M., and Balzani, V.: Light-harvesting dendrimers: Efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew. Chem. Int. Ed. 41, 35953598 (2002) [doi:10.1002/1521-3773(20021004)41:19<3595::AID-ANIE3595>3.0.CO;2-B].3.0.CO;2-B>CrossRefGoogle Scholar
34.Tretiak, S., Chernyak, V., and Mukamel, S.: Localized electronic excitations in phenylacetylene dendrimers. J. Phys. Chem. B 102, 33103315 (1998) [doi:10.1021/jp980745f].CrossRefGoogle Scholar
35.Poliakov, E.Y., Chernyak, V., Tretiak, S., and Mukamel, S.: Exciton-scaling and optical excitations of self-similar phenylacetylene dendrimers. J. Chem. Phys. 110, 81618175 (1999) [doi: 10.1063/1.478730].CrossRefGoogle Scholar
36.Avery, J.S.: Resonance energy transfer and spontaneous photon emission. Proc. Phys. Soc. 88, 18 (1966) [doi: 10.1088/0370-1328/88/1/302].CrossRefGoogle Scholar
37.Gomberoff, L. and Power, E.A.: The resonance transfer of excitation. Proc. Phys. Soc. 88, 281284 (1966) [doi: 10.1088/0370-1328/88/2/302].CrossRefGoogle Scholar
38.Craig, D.P. and Thirunamachandran, T.: Molecular Quantum Electrodynamics. An Introduction to Radiation Molecule Interactions (Dover, New York, 1998), pp. 144149.Google Scholar
39.Juzeliūnas, G. and Andrews, D.L.: Quantum electrodynamics of resonance energy transfer. Adv. Chem. Phys. 112, 357410 (2000).Google Scholar
40.Andrews, D.L. and Bradshaw, D.S.: Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach. Eur. J. Phys. 25, 845858 (2004) [doi: 10.1088/0143-0807/25/6/017].CrossRefGoogle Scholar
41.Salam, A.: Molecular Quantum Electrodynamics. Long- Range Intermolecular Interactions (Wiley, New York, 2010), Chap. 4.Google Scholar
42.Galli, C., Wynne, K., Lecours, S.M., Therien, M.J., and Hochstrasser, R.M.: Direct measurement of electronic dephasing using anisotropy. Chem. Phys. Lett. 206, 493499 (1993) [doi:10.1016/0009-2614(93)80174-N].CrossRefGoogle Scholar
43.van der Meer, B.W.: in Resonance Energy Transfer, edited by Andrews, D.L. and Demidov, A.A. (Wiley, New York, 1999), pp. 151172.Google Scholar
44.Förster, T.: The migration of energy between molecules and fluorescence. Ann. Phys. 2, 5575 (1948) [doi:10.1002/andp.19484370105].CrossRefGoogle Scholar
45.Andrews, D.L. and Rodríguez, J.: Resonance energy transfer: Spectral overlap, efficiency and direction. J. Chem. Phys. 127, 084509 (2007) [doi:10.1063/1.2759489].CrossRefGoogle ScholarPubMed
46.Andrews, D.L. and Li, S.P.: Energy flow in dendrimers: An adjacency matrix representation. Chem. Phys. Lett. 433, 239243 (2006) [doi: 10.1016/j.cplett.2006.11.049].CrossRefGoogle Scholar
47.Andrews, D.L., Li, S.P., Rodrìguez, J., and Slota, J.: Development of the energy flow in light-harvesting dendrimers. J. Chem. Phys. 127, 134902 (2007) [doi: 10.1063/1.2785175].CrossRefGoogle ScholarPubMed
48.Andrews, D.L., Rodrìguez, J., Bradshaw, D.S., and Wells, S.C.: Alternative resonance energy transfer mechanisms in polymer light harvesting, in Energy Harvesting—Molecules and Materials, edited by Andrews, D.L., Ghiggino, K.P., Goodson, T. III, and Nozik, A.J.. (Mater. Res. Soc. Symp. Proc. 1120E, Warrendale, PA, 2009) 1120-M03-05, doi: 10.1557/PROC-1120-M03-05.Google Scholar
49.Scholes, G.D., Jordanides, X.J., and Fleming, G.R.: Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J. Phys. Chem. B 105, 16401651 (2001) [doi: 10.1021/jp003571m].CrossRefGoogle Scholar
50.Jordanides, X.J., Scholes, G.D., and Fleming, G.R.: The mechanism of energy transfer in the bacterial photosynthetic reaction center. J. Phys. Chem. B 105, 16521669 (2001) [doi: 10.1021/jp003572e].CrossRefGoogle Scholar
51.Wong, K.F., Bagchi, B., and Rossky, P.J.: Distance and orientation dependence of excitation transfer rates in conjugated systems: Beyond the Förster theory. J. Phys. Chem. A 108, 57525763 (2004) [doi: 10.1021/jp03772].CrossRefGoogle Scholar
52.Nakano, M., Kishi, R., Nakagawa, N., Nitta, T., and Yamaguchi, K.: Quantum master equation approach to the second hyperpolarizability of nanostar dendritic systems. J. Phys. Chem. B 109, 76317636 (2005) [doi: 10.1021/jp044599r].CrossRefGoogle Scholar
53.Jang, S., Cheng, Y.-C., Reichman, D.R., and Eaves, J.D.: Theory of coherent resonance energy transfer. J. Chem. Phys. 129, 101104 (2008) [doi: 10.1063/1.2977974].CrossRefGoogle ScholarPubMed
54.Kim, J.H. and Cao, J.: Optimal efficiency of self-assembling light-harvesting arrays. J. Phys. Chem. B 114, 1618916197 (2010).CrossRefGoogle ScholarPubMed
55.Ishizaki, A. and Fleming, G.R.: Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009) [doi: 10.1063/1.3155372].CrossRefGoogle ScholarPubMed
56.Ishizaki, A. and Fleming, G.R.: On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130, 234110 (2009) [doi: 10.1063/1.3155214].CrossRefGoogle Scholar
57.Yeow, E.K.L., Ghiggino, K.P., Reek, J.N.H., Crossley, M.J., Bosman, A.W., Schenning, A.P.H.J., and Meijer, E.W.: The dynamics of electronic energy transfer in novel multiporphyrin functionalized dendrimers: A time-resolved fluorescence anisotropy. J. Phys. Chem. B 104, 25962606 (2000) [doi: 10.1021/jp993116u].Google Scholar
58.Zhu, H., May, V., and Röder, B.: Mixed quantum classical simulations of electronic excitation energy transfer: The pheophorbide-a DAB dendrimer P4 in solution. Chem. Phys. 351, 117128 (2008) [doi: 10.1016/j.chemphys.2008.04.009].CrossRefGoogle Scholar
59.Megow, J., Röder, B., Kulesza, A., Bonačić-Koutecký, V., and May, V.: A mixed quantum–classical description of excitation energy transfer in supramolecular complexes: Förster theory and beyond. ChemPhysChem 12, 645656 (2011) [DOI: 10.1002/cphc.201000857].CrossRefGoogle ScholarPubMed
60.Fernandez-Alberti, S., Kleiman, V.D., Tretiak, S., and Roitberg, A.E.: Nonadiabatic molecular dynamics simulations of the energy transfer between building blocks in a phenylene ethynylene dendrimer”, J. Phys. Chem. A 113, 75357542 (2009) [doi: 10.1021/jp900904q].CrossRefGoogle Scholar
61.Muñoz-Losa, A., Curutchet, C., Fdez Galván, I., and Mennucci, B.: Quantum mechanical methods applied to excitation energy transfer: A comparative analysis on excitation energies and electronic couplings. J. Chem. Phys. 21, 034104 (2008) [doi:10.1063/1.2953716].CrossRefGoogle Scholar
62.Andrews, D.L. and Jones, G.A.: Primary photonic processes in energy harvesting: Quantum dynamical analysis of exciton energy transfer over three-dimensional dendrimeric geometries, in Energy Harvesting—Recent Advances in Materials, Devices and Applications, edited by Venkatasubramanian, R., Radousky, H.B., and Liang, H.. (Mater. Res. Soc. Symp. Proc. 1325, Warrendale, PA, 2011) mrss11-1325-e05-01, DOI:10.1557/opl.2011.846.Google Scholar
63.Jones, G.A., Acocella, A., and Zerbetto, F.: Nonlinear optical properties of C60 with explicit time-dependent electron dynamics. Theor. Chem. Acc. 118, 99106 (2007) [doi: 10.1007/s00214-007-0251-4].CrossRefGoogle Scholar
64.Acocella, A., Jones, G.A., and Zerbetto, F.: What is adenine doing in photolyase? J. Phys. Chem. B 114, 41014106 (2010) [doi: 10.1021/jp101093z].CrossRefGoogle ScholarPubMed
65.Jones, G.A., Acocella, A., and Zerbetto, F.: On-the-fly, electric-field-driven, coupled electron-nuclear dynamics. J. Phys. Chem. A 112, 96509656 (2008) [doi: 10.1021/jp805360v].CrossRefGoogle ScholarPubMed
66.Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, 2007), p. 1049.Google Scholar
67.Ashkenazi, G., Kosloff, R., and Ratner, M.A.: Photoexcited electron transfer: Short-time dynamics and turnover control by dephasing, relaxation, and mixing. J. Am. Chem. Soc. 121, 33863395 (1999) [10.1021/ja981998p].CrossRefGoogle Scholar
68.Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mancal, T., Cheng, Y.-C., Blankenship, R.E., and Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782786 (2007) [doi: 10.1038/nature05678].CrossRefGoogle ScholarPubMed
69.Lee, H., Cheng, Y.C., and Fleming, G.R.: Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 14621465 (2007) [doi: 10.1126/science.1142188].CrossRefGoogle ScholarPubMed
70.Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., and Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 664669 (2010) [doi: 10.1038/nature08811].CrossRefGoogle ScholarPubMed
71.Ishizaki, A., Calhoun, T.R., Schlau-Cohen, G.S., and Fleming, G.R.: Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12 73197337 (2010).CrossRefGoogle ScholarPubMed
72.Zimanyi, E.N. and Silbey, R.J.: Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics. J. Chem. Phys. 133, 144107 (2010).CrossRefGoogle ScholarPubMed
73.Drobizhev, M., Karotki, A., Rebane, A., and Spangler, C.W.: Dendrimer molecules with record large two-photon absorption cross section. Opt. Lett. 26, 10811083 (2001).CrossRefGoogle ScholarPubMed
74.Powell, C.E., Morrall, J.P., Ward, S.A., Cifuentes, M.P., Notaras, E.G.A., Samoc, M., and Humphrey, M.G.: Dispersion of the third-order nonlinear optical properties of an organometallic dendrimer. J. Amer. Chem. Soc. 126, 1223412235 (2004).CrossRefGoogle ScholarPubMed
75.Wang, Y., Xie, X., and Goodson, T. III: Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites. Nano Lett. 5, 23792384 (2005).CrossRefGoogle ScholarPubMed
76.Cho, M.J., Choi, D.H., Sullivan, P.A., Akelaitis, A.J.P., and Dalton, L.R.: Recent progress in second-order nonlinear optical polymers and dendrimers. Progr. Polymer Sci. 33, 10131058 (2008).CrossRefGoogle Scholar
77.Narayanan, A., Varnavski, O., Mongin, O., Majoral, J.P., Blanchard-Desce, M., and Goodson, T. III: Detection of TNT using a sensitive two-photon organic dendrimer for remote sensing. Nanotechnology 19, 115502 (2008).CrossRefGoogle Scholar
78.Xu, B., Fang, H., Chen, F., Lu, H., He, J., Li, Y., Chen, Q., Sun, H., and Tian, W.: Synthesis, characterization, two-photon absorption, and optical limiting properties of triphenylamine-based dendrimers. New J. Chem. 33, 24572464 (2009).CrossRefGoogle Scholar
79.Li, Z., Wu, W., Li, Q., Yu, G., Xiao, L., Liu, Y., Ye, C., Qin, J., and Li, Z.: High-generation second-order nonlinear optical (NLO) dendrimers: Convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew. Chem. Int. Ed. 122, 28232827 (2010).CrossRefGoogle Scholar
80.Parida, M.R. and Vijayan, C.: Linear and nonlinear optical properties of dendrimer-based nanoclusters. Proc. SPIE 7774, 77740U (2010).Google Scholar
81.Zhang, X., Wang, C., Lu, X., and Zeng, Y.: Nonlinear optical response of liquid crystalline azo-dendrimer in picosecond and cw regimes, J. Appl. Polym. Sci. 120, 30653070 (2011).CrossRefGoogle Scholar
82.Yan, Z.-Q., Xu, B., Dong, Y.-J., Tian, W.-J., and Li, A.-W.: The photophysical properties and two-photon absorption of novel triphenylamine-based dendrimers. Dyes Pigm. 90, 269274 (2011).CrossRefGoogle Scholar
83.Aida, T., Jiang, D., Yashima, E. and Okamoto, Y.: A new approach to light-harvesting with dendritic antenna. Thin Solid Films 331, 254258 (1998) [doi:10.1016/S0040-6090(98)00927-4].CrossRefGoogle Scholar
84.Andrews, D.L., Bradshaw, D.S., Jenkins, R.D., and Rodríguez, J.: Dendrimer light-harvesting: Intramolecular electrodynamics and mechanisms. Dalton Trans. 1000610014 (2009) [doi: 10.1039/b908675g].CrossRefGoogle ScholarPubMed
85.Andrews, D.L. and Bradshaw, D.S.: Optically nonlinear energy transfer in light-harvesting dendrimers. J. Chem. Phys. 121, 24452454 (2004).CrossRefGoogle ScholarPubMed
86.Rebane, A., Drobizhev, M., Spangler, C.W., Christensson, N., and Stepanenko, Y.: Quantum interference by femtosecond multiphoton absorption in conjugated dendrimers. Proc. SPIE 5934, 59340L (2005).CrossRefGoogle Scholar
87.Huo, P. and Coker, D.F.: Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. J. Chem. Phys. 133, 184108 (2010).CrossRefGoogle ScholarPubMed
88.May, V.: Higher-order processes of excitation energy transfer in supramolecular complexes: Liouville space analysis of bridge molecule mediated transfer and direct photon exchange. J. Chem. Phys. 129, 114109 (2008).CrossRefGoogle ScholarPubMed
89.May, V.: Beyond the Förster theory of excitation energy transfer: importance of higher-order processes in supramolecular antenna systems. Dalton Trans. 1008610105 (2009).CrossRefGoogle ScholarPubMed
90.Daniels, G.J. and Andrews, D.L.: The electronic influence of a third body on resonance energy transfer. J. Chem. Phys. 116, 67016712 (2002).CrossRefGoogle Scholar
91.Andrews, D.L. and Leeder, J.M.: Resonance energy transfer: When a dipole fails. J. Chem. Phys. 130, 184504 (2009).CrossRefGoogle Scholar
92.Zeng, Y., Li, Y.Y., Chen, J., Yang, G., and Li, Y.: Dendrimers: A mimic natural light-harvesting system. Chem. Asian J. 5, 9921005 (2010).CrossRefGoogle ScholarPubMed