Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T16:57:39.309Z Has data issue: false hasContentIssue false

Li(Al1–zZnz) alloys as anode materials for rechargeable Li-ion batteries

Published online by Cambridge University Press:  31 January 2011

I. Chumak*
Affiliation:
IFW Dresden, Institute for Complex Materials, 01069 Dresden, Germany
V. Pavlyuk
Affiliation:
Department of Inorganic Chemistry, Ivan Franko Lviv National University, 79005 Lviv, Ukraine
J. Eckert*
Affiliation:
IFW Dresden, Institute for Complex Materials, 01069 Dresden, Germany
H. Eckert
Affiliation:
Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
H. Pauly
Affiliation:
Technische Universität Darmstadt, Materials Science, 64287 Darmstadt, Germany
H. Ehrenberg
Affiliation:
IFW Dresden, Institute for Complex Materials, 01069 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
b)This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
Get access

Abstract

The cycling behavior of anode materials based on alloys from the Li(Al1–zZnz) continuous solid solution has been studied. The performance of the most promising composition Li(Al0.8Zn0.2) was tested in half-cells against metallic Li with three different electrolytes and in full Li-ion cells against a V2O5 cathode. The underlying structure evolution during cycling and the most relevant fatigue mechanisms are elucidated by x-ray diffraction, nuclear magnetic resonance, and x-ray photoelectron spectroscopy, and reveal a loss of mobile Li due to the ongoing formation of solid electrolyte interfaces. An enhanced stability for Li(Al1–zZnz) electrodes with z˜0.2 results from a peculiar microstructure due to the decomposition of Al and Zn in the Li-poor state and their intermixing in the Li-rich state.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Winter, M., Besenhard, J.O., Spahr, M.E., Novák, P.Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725 (1998)3.0.CO;2-Z>CrossRefGoogle Scholar
2.Winter, M., Besenhard, J.O.Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31 (1999)Google Scholar
3.Yang, J., Wachtler, M., Winter, M., Besenhard, J.O.Sub-microcrystalline Sn and Sn–SnSb powders as lithium storage materials for lithium-ion batteries. Electrochem. Solid-State Lett. 2, 161 (1999)CrossRefGoogle Scholar
4.Zintl, E., Brauer, W.G.Über die Valenzelektronenregel und die Atomradien unedler Metalle in Legierungen. Z. Phys. Chem. B 20, 245 (1933)CrossRefGoogle Scholar
5.Zintl, E., Woltersdorf, G.Gitterstruktur von LiAl. Z. Electrochem. B 41, (12)876 (1935)Google Scholar
6.Dmytriv, G., Pavlyuk, V., Tarasiuk, I., Pauly, H., Ehrenberg, H., Marciniak, B., Prochwicz, W., Schroeder, G.Li–Zn–{Al, Sn} Zintl phase alloys for the anode materials of lithium batteries. Visnyk Lviv Univ. Ser. Khim. 48, (1)172 (2007)Google Scholar
7.Binary Alloy Phase Diagrams 2nd ed edited by T.B. Massalski,H. Okamoto, P.R. Subramanian, and L. Kacprzak (ASM International, Materials Park, OH 1990)Google Scholar
8.Roisnel, T., Rodriguez-Carvajal, J.WinPLOTR: A Windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 378–3, 118 (2001)CrossRefGoogle Scholar
9.Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.O., Bujoli, B., Gan, Z., Hoatson, G.Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70 (2002)Google Scholar
10.Vegard, L.Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17 (1921)CrossRefGoogle Scholar
11.Denton, A.R., Ashcroft, N.W.Vegard's law. Phys. Rev. A 43, 3161 (1991)CrossRefGoogle ScholarPubMed
12.Hamon, Y., Brousse, T., Jousse, F., Topart, P., Buvat, P., Schleich, D.M.Aluminum negative electrode in lithium ion batteries aluminum negative electrode in lithium ion batteries. J. Power Sources 97–98, 185 (2001)CrossRefGoogle Scholar
13.Brandt, K.Historical development of secondary lithium batteries. Solid State Ionics 69, 173 (1994)CrossRefGoogle Scholar
14.Farrar, R.A., King, H.W.Axial ratios and solubility limits of H.C.P. η phases in the systems Cd–Au, Cd–Li, and Zn–Li. Metallography 1, 79 (1968)Google Scholar
15.Zintl, E., Schneider, A.X-ray analysis of lithium zinc alloys. Z. Elektrochem. 41, 764 (1935)Google Scholar
16.Wachtler, M., Besenhard, J.O., Winter, M.Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J. Power Sources 94, 189 (2001)CrossRefGoogle Scholar
17.Winter, M., Appel, W.K., Evers, B., Hodal, T., Möller, K-C., Schneider, I., Wachtler, M., Wagner, M.R., Wrodnigg, G.H., Besenhard, J.O.Studies on the anode/electrolyte interface in lithium ion batteries. Monatsh. Chem. 132, 473 (2001)Google Scholar