Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T16:40:42.307Z Has data issue: false hasContentIssue false

Layered stacking characteristics of ternary zirconium aluminum carbides

Published online by Cambridge University Press:  31 January 2011

Z.J. Lin
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100049, China
L.F. He
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100049, China
M.S. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
J.Y. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Layered stacking characteristics of ternary Zr–Al–C carbides were investigated using scanning transmission electron microscopy (STEM). Three previously unknown compounds, i.e., Zr4Al3C6, Zr5Al6C9, and Zr7Al6C11 were identified. The present study extends the structural information of ternary Zr–Al–C ceramics. The influence of the thickness of the NaCl-type Zr-C slab on the elastic properties of ternary Zr–Al–C ceramics is discussed based on first-principles calculations. In addition, direct atomic-resolution observations illustrate the process for forming the unique layered crystal structures of ternary Zr–Al–C ceramics. These results also provide insights into the formation mechanism of layered ternary Zr–Al–C carbides.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nowotny, H.Windisch, S.: High temperature compounds. Annu. Rev. Mater. Sci. 3, 171 1973CrossRefGoogle Scholar
2Barsoum, M.W.: The MN+1AXN phases: a new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 2000CrossRefGoogle Scholar
3Lin, Z.J., Li, M.S.Zhou, Y.C.: TEM investigations on layered ternary ceramics. J. Mater. Sci. Technol. 23, 145 2007Google Scholar
4Tzenov, N.V.Barsoum, M.W.: Synthesis and characterization of Ti3AlC2. J. Am. Ceram. Soc. 83, 825 2000CrossRefGoogle Scholar
5Wang, X.H.Zhou, Y.C.: Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J. Mater. Chem. 12, 455 2002CrossRefGoogle Scholar
6Wang, X.H.Zhou, Y.C.: Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 50, 3141 2002CrossRefGoogle Scholar
7Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S.Wang, J.Y.: Microstructural characterization of layered ternary Ti2AlC. Acta Mater. 54, 1009 2006CrossRefGoogle Scholar
8Wang, X.H.Zhou, Y.C.: High-temperature oxidation of Ti2AlC in air. Oxid. Met. 59, 303 2003CrossRefGoogle Scholar
9Lin, Z.J., Zhou, Y.C., Li, M.S.Wang, J.Y.: In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC. Z. Metallkd. 96, 291 2005CrossRefGoogle Scholar
10Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S.Wang, J.Y.: Structural characterization of a new layered-ternary Ta4AlC3 ceramic. J. Mater. Res. 21, 2587 2006CrossRefGoogle Scholar
11Schuster, J.C.Nowotny, H.: Investigations of the ternary systems (Zr, Hf, Nb, Ta)–Al–C and studies on complex carbides. Z. Metallkd. 71, 341 1980Google Scholar
12Parthé, E.Chabot, B.: Zr2Al3C5–x and Hf2Al3C5–x described with higher symmetrical space group P63/mmc. Acta Crystallogr., Sect. C 44, 774 1988CrossRefGoogle Scholar
13Gesing, T.M.Jeitschko, W.: The crystal structures of Zr3Al3C5, ScAl3C3, and UAl3C3 and their relation to the structure of U2Al3C4 and Al4C3. J. Solid State Chem. 140, 396 1998CrossRefGoogle Scholar
14Lin, Z.J., Zhuo, M.J., He, L.F., Zhou, Y.C., Li, M.S.Wang, J.Y.: Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics. Acta Mater. 54, 3843 2006CrossRefGoogle Scholar
15Hashimoto, S., Yamaguchi, A.Yasuda, M.: Fabrication and properties of novel composites in the system Al–Zr–C. J. Mater. Sci. 33, 4835 1998CrossRefGoogle Scholar
16Leela-adisorn, U., Choi, S.M., Hashimoto, S., Honda, S., Awaji, H., Hayakawa, K.Yamaguchi, A.: Sintering and characterization of Zr2Al3C5 monolith. Key Eng. Mater. 317–318, 27 2006CrossRefGoogle Scholar
17Leela-adisorn, U., Choi, S.M., Matsunaga, T., Hashimoto, S., Honda, S., Hayakawa, K., Awaji, H.Yamaguchi, A.: AlZrC2 synthesis. Ceram. Int. 32, 431 2006CrossRefGoogle Scholar
18He, L.F., Zhou, Y.C., Bao, Y.W., Wang, J.Y.Li, M.S.: Synthesis and oxidation of Zr3Al3C5 powders. Inter. J. Mater. Res. 98, 3 2007CrossRefGoogle Scholar
19Wang, J.Y., Zhou, Y.C., Lin, Z.J., Liao, T.He, L.F.: First-principles prediction of the mechanical properties and electrical structure of ternary aluminum carbide Zr3Al3C5. Phy. Rev. B 73, 134107 2006CrossRefGoogle Scholar
20He, L.F., Zhou, Y.C., Bao, Y.W., Lin, Z.J.Wang, J.Y.: Synthesis, physical and mechanical properties of bulk Zr3Al3C5 ceramic. J. Am. Ceram. Soc. 90, 1164 2007CrossRefGoogle Scholar
21Palmquist, J.P., Li, S., Persson, P.O.Å., Emmerlich, J., Wilhelmsson, O., Högberg, H., Katsnelson, M.I., Johansson, B., Ahuja, R., Eriksson, O., Hultman, L.Jansson, U.: Mn+1AXn phases in the Ti-Si-C system studied by thin film synthesis and ab initio calculations. Phys. Rev. B 70, 165401 2004CrossRefGoogle Scholar
22Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J.Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 2002Google Scholar
23Vanderbilt, D.: Soft self-consistent pseudopotential in a generalized eignevalue formalism. Phys. Rev. B 41, R7892 1990CrossRefGoogle Scholar
24Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J.Fiolhais, C.: Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 1992CrossRefGoogle Scholar
25Pfrommer, B.G., Côté, M., Louie, S.G.Cohen, M.L.: Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 131, 233 1997CrossRefGoogle Scholar
26Milman, V.Warren, M.C.: Elasticity of hexagonal BeO. J. Phys.: Condens. Matter 13, 241 2001Google Scholar
27Wang, J.Y., Zhou, Y.C., Liao, T.Lin, Z.J.: Trend in crystal structure of layered ternary T-Al-C carbides (T=Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, W, and Ta). J. Mater. Res. 22(10), 2685 2007CrossRefGoogle Scholar
28Wang, J.Y.Zhou, Y.C.: Dependence of elastic stiffness on electronic band structure of nanolaminate M 2AlC (M=Ti, V, Nb, and Cr) ceramics. Phys. Rev. B 69, 214111 2004CrossRefGoogle Scholar
29Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S.Wang, J.Y.: Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides. J. Am. Ceram. Soc. 89, 3765 2006CrossRefGoogle Scholar
30Wilhelmsson, O., Palmquist, J.P., Lewin, E., Emmerlich, J., Eklund, P., Persson, P.O.Å., Högberg, H., Li, S., Ahuja, R., Eriksson, O., Hultman, L.Jansson, U.: Deposition and characterization of ternary thin films within the Ti-Al-C system by DC magnetron sputtering. J. Cryst. Growth 291, 290 2006CrossRefGoogle Scholar
31Green, D.J.: An Introduction to the Mechanical Properties of Ceramics Cambridge University Press Cambridge, UK 1998CrossRefGoogle Scholar