Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T11:57:49.722Z Has data issue: false hasContentIssue false

Layered mixed tin-titanium phosphates

Published online by Cambridge University Press:  31 January 2011

Camino Trobajo
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Maria L. Rodríguez
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Marta Suárez
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
José R. García*
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Julio Rodríguez
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
José B. Parra
Affiliation:
Instituto Nacional del Carbón, C.S.I.C. Apartado 73, 33080 Oviedo, Spain
Miguel A. Salvadó
Affiliation:
Departamento de Química Física y Analítica, Universidad de Oviedo, 33071 Oviedo, Spain
Pilar Pertierra
Affiliation:
Departamento de Química Física y Analítica, Universidad de Oviedo, 33071 Oviedo, Spain
Santiago García-Granda
Affiliation:
Departamento de Química Física y Analítica, Universidad de Oviedo, 33071 Oviedo, Spain
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

Mixed crystalline tin-titanium phosphates with variable tin-to-titanium molar ratio have been prepared by precipitation of soluble salts of the metal (IV) with phosphoric acid and refluxing the amorphous solids in 17 M H3PO4. The new materials are characterized by chemical textural and thermal analysis and x-ray powder diffraction. The tin-titanium phosphates are solid solutions showing an isomorphic substitution of tin by titanium in the α-tin phosphate lattice and tin substitution in the γ-titanium phosphate lattice. In both cases, the solubility is partial. The coexistence of both saturated phases is observed in samples of composition between the solubility limits.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inorganic Ion Exchange Materials, edited by Clearfield, A. (CRC Press, Boca Raton, FL, 1982).Google Scholar
2.Alberti, G. and Costantino, U., in Intercalation Chemistry, edited by Whittinghan, M. S. and Jacobson, A. J. (Academic Press, New York, 1982).Google Scholar
3.Alberti, G., in Recent Developments in Ion Exchange, edited by Williams, P. A. and Hudson, M. J. (Elsevier Applied Science, London, 1987).Google Scholar
4.Clearfield, A., in Design of New Materials (Plenum Press, New York, 1987).Google Scholar
5.Alberti, G. and Costantino, U., in Inclusion Compounds. Inorganic and Physical Aspects of Inclusion, edited by Atwood, J. L., Davis, J. E. D., and MacNicol, D. D. (Oxford University Press, Oxford, 1991), Vol. 5.Google Scholar
6.García, J. R., Llavona, R., Suárez, M., and Rodríguez, J., Trends Inorg. Chem. 3, 209 (1993).Google Scholar
7.Llavona, R., Suárez, M., García, J. R., and Rodríguez, J., Inorg. Chem. 28, 2863 (1989).CrossRefGoogle Scholar
8.Troup, J. M. and Clearfield, A., Inorg. Chem. 16, 3311 (1977).CrossRefGoogle Scholar
9.Bruque, S., Aranda, M. A. G., Losilla, E. R., Oliveira-Pastor, P., and Maireles-Torres, P., Inorg. Chem. 34, 893 (1995).CrossRefGoogle Scholar
10.Christensen, A. N., Andersen, E. K., Andersen, I. G. K., Alberti, G., Nielsen, M., and Lehmann, M. S., Acta Chem. Scand. 44, 865 (1990).CrossRefGoogle Scholar
11.Poojary, D. M., Shpeizer, B., and Clearfield, A., J. Chem. Soc., Dalton Trans., 111 (1995).Google Scholar
12.Clearfield, A. and Stynes, J. A., J. Inorg. Nucl. Chem. 26, 117 (1964).CrossRefGoogle Scholar
13.Alberti, G., Cardini-Galli, P., Costantino, U., and Torracca, E., J. Inorg. Nucl. Chem. 29, 571 (1967).CrossRefGoogle Scholar
14.Frydrych, R. and Lohoff, K., Chem. Ber., 4070 (1969).Google Scholar
15.Costantino, U. and Gasperoni, A., J. Chromatogr. 51, 289 (1970).CrossRefGoogle Scholar
16.Dines, M. B. and DiGiacomo, P. M., Inorg. Chem. 20, 92 (1981).CrossRefGoogle Scholar
17.Poojary, M. D., Hu, H-L., Campbell, F. L., and Clearfield, A., Acta Crystallogr. B49, 996 (1993).CrossRefGoogle Scholar
18.Villa-García, M. A., Jaimez, E., Bortun, A., García, J. R., and Rodríguez, J., J. Porous Mater. 2, 85 (1995).CrossRefGoogle Scholar
19.Clearfield, A., Blessing, R. H., and Stynes, J. A., J. Inorg. Nucl. Chem. 30, 2249 (1968).CrossRefGoogle Scholar
20.Allulli, S., Ferragina, C., LaGinestra, A., Massucci, M. A., and Tomassini, N., J. Inorg. Nucl. Chem. 39, 1043 (1977).CrossRefGoogle Scholar
21.Alberti, G., Vivani, R., Biswas, R. K., and Murcia-Mascarós, S., React. Polym. 19, 1 (1993).CrossRefGoogle Scholar
22.Clearfield, A. and Frianeza, T. N., J. Inorg. Nucl. Chem. 40, 1925 (1978).CrossRefGoogle Scholar
23.Shakshooki, S. K., Szirtes, L., Khalil, S., Azzabi, U., Naqui, N., and Kowalczyk, J., J. Radioanal. Nucl. Chem. 121, 175 (1988).CrossRefGoogle Scholar
24.Farfán-Torres, E. M., Sham, E. L., Martínez-Lara, M., and Jiménez-López, A., Mater. Res. Bull. 27, 1255 (1992).CrossRefGoogle Scholar
25.Suárez, M., García, J. R., and Rodríguez, J., J. Mater. Chem. Phys. 8, 451 (1983).CrossRefGoogle Scholar
26.Bortun, A. I., García, J. R., Budovitskaya, T. A., Strelko, V. V., and Rodríguez, J., Mater. Res. Bull. 31, 487 (1996).CrossRefGoogle Scholar
27.Llavona, R., García, J. R., Suárez, M., and Rodríguez, J., Thermochim. Acta 86, 281 (1985).CrossRefGoogle Scholar
28.Kobayashi, E., Bull. Chem. Soc. Jpn. 48, 3114 (1975).CrossRefGoogle Scholar
29.Chernorukov, N. G., Zhuk, M. I., and Moskvichev, E. P., Tr. Khim. Khim. Tekhnol. 3, 9 (1974).Google Scholar
30.Chernorukov, N. G., Mochalova, I. R., Moskvichev, E. P., and Sibrina, G. B., Zh. Prikl. Khim. (Leningrad) 50, 1618 (1977).Google Scholar
31.La Ginestra, A. and Massucci, M. A., Thermochim. Acta 32, 241 (1979).CrossRefGoogle Scholar
32. The a parameter was obtained by using a profile refinement method FULLPROF (Rodríguez-Carvajal). R wp values are in the range 13 to 18%.Google Scholar
33.Murdie, H. Mc., Powd. Diff. 2, 52 (1987).Google Scholar
34.Knop, O., Can. J. Chem. 53, 79 (1975).Google Scholar
35.Llavona, R., Suárez, M., García, J. R., and Rodríguez, J., Anal. Chem. 58, 547 (1986).CrossRefGoogle Scholar
36.González, E., Llavona, R., García, J. R., and Rodríguez, J., J. Chem. Soc., Dalton Trans., 1825 (1989).CrossRefGoogle Scholar
37.Llavona, R., Alvarez, C., García, J. R., Suárez, M., and Rodríguez, J., Solvent Extr. Ion Exch. 3, 931 (1985).CrossRefGoogle Scholar
38.Llavona, R., García, J. R., Alvarez, C., Suárez, M., and Rodríguez, J., Solvent Extr. Ion Exch. 4, 567 (1986).CrossRefGoogle Scholar
39.Suárez, M., García, J. R., and Rodríguez, J., J. Phys. Chem. 88, 159 (1984).CrossRefGoogle Scholar
40.García, J. R., Suárez, M., Llavona, R., and Rodríguez, J., J. Chem. Soc., Dalton Trans., 2605 (1984).Google Scholar
41.Kobayashi, E. and Yamazaki, S., Bull. Chem. Soc. Jpn. 56, 1632 (1983).CrossRefGoogle Scholar