Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T13:05:39.208Z Has data issue: false hasContentIssue false

Lattice distortions in high-entropy alloys

Published online by Cambridge University Press:  12 October 2018

Lewis Robert Owen
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, U.K.
Nicholas Gwilym Jones*
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, U.K.
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

One of the founding concepts of the high-entropy alloy (HEA) field was that the lattice structures of multicomponent solid solution phases are highly distorted. The displacement of the constituent atoms, away from their ideal locations (local lattice strain), has been widely cited as the reason for a number of the observed physical and mechanical properties. However, very little data directly characterizing these lattice distortions exist and, thus, the validity of this hypothesis remains an open question. Here, the concept is reviewed by considering the underlying principles of the lattice distortions, the suitability of different assessment methods, and the direct experimental data currently available. It is found that, at present, there is no clear evidence that the lattice distortions in HEAs are significantly greater than those of conventional alloys. However, so few alloys have been appropriately characterized that this conclusion cannot be considered overarching and further research is required.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J., Chen, S., Lin, S., Gan, J., Chin, T., Shun, T., Tsau, C., and Chang, S.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Yeh, J-W.: Recent progress in high-entropy alloys. Ann. Chim. 31, 633 (2006).CrossRefGoogle Scholar
Pickering, E.J. and Jones, N.G.: High entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 488 (2017).CrossRefGoogle Scholar
Wang, F.J., Zhang, Y., and Chen, G.L.: Atomic packing efficiency and phase transition in a high entropy alloy. J. Alloys Compd. 478, 321 (2009).CrossRefGoogle Scholar
Pickering, E.J., Stone, H.J., and Jones, N.G.: Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu. Mater. Sci. Eng., A 645, 65 (2015).CrossRefGoogle Scholar
Withers, P.J. and Bhadeshia, H.K.D.H.: Residual stress. Part 1—Measurement techniques. Mater. Sci. Technol. 17, 355 (2001).CrossRefGoogle Scholar
Dye, D., Stone, H., and Reed, R.: Intergranular and interphase microstresses. Curr. Opin. Solid State Mater. Sci. 5, 31 (2001).CrossRefGoogle Scholar
Hume-Rothery, W., Mabbott, G.W., and Channel Evans, K.M.: The freezing points, melting points and solid solubilty limits of the alloys of silver and copper with elements of the B sub-groups. Philos. Trans. R. Soc., A 233, 1 (1934).CrossRefGoogle Scholar
Hume-Rothery, W., Smallman, R.E., and Haworth, C.W.: The Structure of Metals and Alloys, 5th ed. (The Institute of Metals, London, U.K., 1969).Google Scholar
Waber, J.T., Gschneidner, K., Larson, A.C., and Prince, M.Y.: Prediction of solid solubility in metallic alloys. Trans. Metall. Soc. AIME 227, 717 (1963).Google Scholar
Debye, P.: Interferenz von Röntgenstahlen und Wärmebewegung. Ann. Phys. 348, 49 (1913).CrossRefGoogle Scholar
Waller, I.: Zur Frage der Einwirkung der Wärmebewegung auf die Intergerenz von Röntgenstrahlen. Z. Phys. 17, 398 (1923).CrossRefGoogle Scholar
Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
Huang, K.: X-ray reflexions from dilute solid solutions. Proc. R. Soc. London, Ser. A 190, 102 (1947).CrossRefGoogle ScholarPubMed
Borie, B.: X-ray diffraction effects of atomic size in alloys. Acta Crystallogr. 10, 89 (1957).CrossRefGoogle Scholar
Playford, H.Y., Owen, L.R., Levin, I., and Tucker, M.G.: New insights into complex materials using reverse Monte Carlo modeling. Annu. Rev. Mater. Res. 44, 429 (2014).CrossRefGoogle Scholar
Egami, T. and Billinge, S.J.L.: Underneath the Bragg Peaks, 2nd ed. (Elsevier, Oxford, U.K., 2012).Google Scholar
Owen, L.R.: The Analysis of Local Structural Effects in Alloys Using Total Scattering and Reverse Monte Carlo Techniques (University of Cambridge, Cambridge, U.K., 2017).Google Scholar
Farrow, C.L., Juhas, P., Lui, J.W., Bryndin, D., Bozin, E.S., Bloch, J., Proffen, T., and Billinge, S.J.L.: PDFfit2 and PDFGui: Computer programs for studying nanostructure in crystals. J. Phys.: Condens. Matter 19, 335219 (2007).Google ScholarPubMed
McGreevy, R.L. and Pusztai, L.: Reverse Monte Carlo simulation: A new technique for the determination of disordered structures. Mol. Simul. 1, 359 (1988).CrossRefGoogle Scholar
Tucker, M.G., Keen, D.A., Dove, M.T., Goodwin, A.L., and Hui, Q.: RMCProfile: Reverse Monte Carlo for polycrystalline materials. J. Phys.: Condens. Matter 19, 335218 (2007).Google ScholarPubMed
Hÿtch, M.J., Gatel, C., Houdellier, F., and Snoeck, E.: Darkfield electron holography for strain mapping at the nanoscale. Microsc. Anal. 26, 6 (2012).Google Scholar
Hÿtch, M., Houdellier, F., Hüe, F., and Snoeck, E.: Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086 (2008).CrossRefGoogle ScholarPubMed
Béché, A., Rouvière, J.L., Barnes, J.P., and Cooper, D.: Dark field electron holography for strain measurement. Ultramicroscopy 111, 227 (2011).CrossRefGoogle ScholarPubMed
Galindo, P.L., Kret, S., Sanchez, A.M., Laval, J-Y., Yáñez, A., Pizarro, J., Guerrero, E., Ben, T., and Molina, S.I.: The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 1186 (2007).CrossRefGoogle ScholarPubMed
Hÿtch, M.J., Snoeck, E., and Kilaas, R.: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131 (1998).CrossRefGoogle Scholar
Rouvière, J.L. and Sarigiannidou, E.: Theoretical discussions on the geometrical phase analysis. Ultramicroscopy 106, 1 (2005).CrossRefGoogle ScholarPubMed
Ozdol, V.B., Gammer, C., Jin, X.G., Ercius, P., Ophus, C., Ciston, J., and Minor, A.M.: Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl. Phys. Lett. 106, 253107 (2015).CrossRefGoogle Scholar
Cooper, D., Denneulin, T., Bernier, N., Béché, A., and Rouvière, J-L.: Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope. Micron 80, 145 (2016).CrossRefGoogle Scholar
Jones, L. and Nellist, P.D.: Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc. Microanal. 19, 1050 (2013).CrossRefGoogle ScholarPubMed
Braidy, N., Le Bouar, Y., Lazar, S., and Ricolleau, C.: Correcting scanning instabilities from images of periodic structures. Ultramicroscopy 118, 67 (2012).CrossRefGoogle ScholarPubMed
Hÿtch, M.J., Putaux, J-L., and Pénisson, J-M.: Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423, 270 (2003).CrossRefGoogle ScholarPubMed
Usuda, K., Numata, T., Irisawa, T., Hirashita, N., and Takagi, S.: Strain characterization in SOI and strained-Si on SGOI MOSFET channel using nano-beam electron diffraction (NBD). Mater. Sci. Eng., B 124–125, 143 (2005).CrossRefGoogle Scholar
Vincent, R. and Midgley, P.A.: Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271 (1994).CrossRefGoogle Scholar
Rouvière, J-L., Béché, A., Martin, Y., Denneulin, T., and Cooper, D.: Improved strain precision with high spatial resolution using nanobeam precession electron diffraction. Appl. Phys. Lett. 103, 241913 (2013).CrossRefGoogle Scholar
Cullity, B.D.: Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Reading, 1956).Google Scholar
Yeh, J.W., Chen, S.K., Gan, J.Y., Lin, S.J., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533 (2004).CrossRefGoogle Scholar
Yeh, J.W.: Physical metallurgy of high-entropy alloys. JOM 67, 2254 (2015).CrossRefGoogle Scholar
Tong, C., Chen, Y., Chen, S., Yeh, J., Shun, T., Tsau, C., Lin, S., and Chang, S.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).CrossRefGoogle Scholar
Chou, H-P., Chang, Y-S., Chen, S-K., and Yeh, J-W.: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Eng., B 163, 184 (2009).CrossRefGoogle Scholar
Yeh, J-W., Chang, S-Y., Hong, Y-D., Chen, S-K., and Lin, S-J.: Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Mater. Chem. Phys. 103, 41 (2007).CrossRefGoogle Scholar
Wang, W-R., Wang, W-L., Wang, S-C., Tsai, Y-C., Lai, C-H., and Yeh, J-W.: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).CrossRefGoogle Scholar
Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).CrossRefGoogle Scholar
Okamoto, N.L., Yuge, K., Tanaka, K., Inui, H., and George, E.P.: Atomic displacement in the CrMnFeCoNi high-entropy alloy—A scaling factor to predict solid solution strengthening. AIP Adv. 6, 125008 (2016).CrossRefGoogle Scholar
Oh, H., Ma, D., Leyson, G., Grabowski, B., Park, E., Körmann, F., and Raabe, D.: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 18, 321 (2016).CrossRefGoogle Scholar
Owen, L.R., Pickering, E.J., Playford, H.Y., Stone, H.J., Tucker, M.G., and Jones, N.G.: An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 122, 11 (2017).CrossRefGoogle Scholar
Guo, W., Dmowski, W., Noh, J-Y., Rack, P., Liaw, P.K., and Egami, T.: Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study. Metall. Mater. Trans. A 44, 1994 (2012).CrossRefGoogle Scholar
Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J.K., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 1 (2015).CrossRefGoogle ScholarPubMed
Owen, L.R., Playford, H.Y., Stone, H.J., and Tucker, M.G.: A new approach to the analysis of short-range order in alloys using total scattering. Acta Mater. 115, 155 (2016).CrossRefGoogle Scholar
Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M.T., Matsunoshita, H., Tanaka, K., Inui, H., and George, E.P.: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 35863, 1 (2016).Google Scholar
Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
Toda-Caraballo, I. and Rivera-Díaz-del-Castillo, P.E.J.: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14 (2015).CrossRefGoogle Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
Song, H., Tian, F., Hu, Q-M., Vitos, L., Wang, Y., Shen, J., and Chen, N.: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 55 (2017).Google Scholar
Ye, Y.F., Zhang, Y.H., He, Q.F., Zhuang, Y., Wang, S., Shi, S.Q., Hu, A., Fan, J., and Yang, Y.: Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Mater. 150, 182 (2018).CrossRefGoogle Scholar
Christofidou, K.A., Pickering, E.J., Orsatti, P., Mignanelli, P.M., Slater, T.J.A., Stone, H.J., and Jones, N.G.: On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys. Intermetallics 92, 84 (2018).CrossRefGoogle Scholar
Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scripta Mater. 113, 106 (2016).CrossRefGoogle Scholar
Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
Guo, S., Hu, Q., Ng, C., and Liu, C.T.: More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41, 96 (2013).CrossRefGoogle Scholar
Yeh, J-W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).CrossRefGoogle Scholar