Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:28:50.318Z Has data issue: false hasContentIssue false

Laser micromachining of Al2O3−TiC ceramics

Published online by Cambridge University Press:  31 January 2011

V. Oliveira
Affiliation:
Department of Materials, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisbon, Portugal
R. Vilar
Affiliation:
Department of Materials, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisbon, Portugal
O. Conde
Affiliation:
Department of Physics, University of Lisbon, Campo Grande Ed. C1, 1700 Lisbon, Portugal
P. Freitas
Affiliation:
Department of Physics, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisbon, Portugal
Get access

Abstract

Al2O3−34 wt.% TiC ceramics have been machined with a KrF (248 nm) excimer laser under normal atmosphere. In the initial steps of the irradiation process both the roughness and the removal rate present a strong variation with the number of pulses. After approximately 200 pulses the process reaches a stationary regime where the roughness and the removal rate become constant. Characterization of the machined areas by scanning electron microscopy showed that the variations in roughness and removal rate are related to the evolution of the surface topography of the samples. Also, as a consequence of laser irradiation, TiC and Al2O3 are partially transformed into TiO2, TiC0.7N0.3, and an Al–Ti solid solution.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Beyer, H., Ross, W., Rudolph, R., Michaelis, A., Uhlenbusch, J., and Viol, W., J. Appl. Phys. 70, 75 (1991).Google Scholar
2.Nikumb, S. K., Islam, M. U., and Campbell, G. R., in Proceedings of ICALEO'93: Laser Materials Processing, edited by Denney, P., Miyamoto, I., and Mordike, B. L. (Laser Institute of America, Orlando, FL, 1994), p. 51.Google Scholar
3.Kelly, R. and Rothenberg, J. E., Nucl. Instrum. Methods Phys. Res. B1, 291 (1984).Google Scholar
4.Kelly, R., Cuomo, J. J., Leary, P. A., Rothenberg, J. E., Braren, B. E., and Aliotta, C. F., Nucl. Instrum. Methods Phys. Res. B9, 329 (1985).CrossRefGoogle Scholar
5.Dreyfus, R., Kelly, R., and Walkup, R. E., Appl. Phys. Lett. 49, 1478 (1986).CrossRefGoogle Scholar
6.Haglund, R. F. and Itoh, N., in Laser Ablation: Principles and Applications, edited by Miller, J. C., Springer Series in Materials Science (Springer-Verlag, Berlin, 1994), p. 11.CrossRefGoogle Scholar
7.Duley, W. W., UV Lasers: Effects and Applications in Materials Science, 1st ed. (Cambridge University Press, Cambridge, 1996).Google Scholar
8.Lowndes, D. H., de Silva, M., Godbole, M. J., Pedraza, A. J., Thundat, T., and Warmack, R. J., Appl. Phys. Lett. 64, 1791 (1994).CrossRefGoogle Scholar
9.Ihlemann, J. and Wolff-Rottke, B., Appl. Surf. Sci. 106, 282 (1996).Google Scholar
10.Schmatjko, K. J., Endres, G., and Durchholz, H., in Proc. 5th Int. Conf. Lasers in Manufacturing, edited by Hugel, H. (IFS/Springer-Verlag, Stuttgart, 1988), p. 145.Google Scholar
11.Hofmann, S. and Sanz, J. M., J. Trace Microprobe Technol. 1, 213 (1983).Google Scholar
12.Nyaiesh, A. R., Garwin, E. L., King, F. K., and Kirby, R. E., J. Vac. Sci. Technol. A4, 2356 (1986).Google Scholar
13.Ernsberger, C., Nickerson, J., Miller, A. E., and Moulder, J., J. Vac. Sci. Technol. A13, 2415 (1985).CrossRefGoogle Scholar
14.Thomas, D. W., Foulkes-Williams, C., Rumsby, P. T., and Gower, M. C., in Laser Ablation of Electronic Materials: Basics Mechanism and Applications, edited by Fogarassy, E. and Lazare, S. (Elsevier Science Publishers, Amsterdam, 1992), p. 221.Google Scholar