Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T18:29:15.547Z Has data issue: false hasContentIssue false

Large-area quantification of BaCeO3 formation during processing of metalorganic-deposition-derived YBCO films

Published online by Cambridge University Press:  03 March 2011

D.E. Wesolowski
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M.J. Cima*
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A method is described for the quantification of BaCeO3 formation during the growth of YBa2Cu3O7–x (YBCO) films on CeO2 buffer layers. The method is based on the selective etching of BaCeO3 followed by inductively coupled plasma (ICP) excitation spectroscopy. A 10% HNO3 solution, at room temperature, dissolved BaCeO3 and YBCO in minutes but did not significantly etch CeO2 films. ICP excitation spectroscopy was used to quantify the extent of the reaction over macroscopic areas of film (∼1 cm2). BaCeO3 peak areas were measured by x-ray diffraction (XRD) and calibrated to the ICP excitation spectroscopy results. XRD and ICP excitation spectroscopy results indicated that BaCeO3 formation through a metalorganic deposition (MOD)-derived CeO2 layer follows the parabolic growth law. Almost the entire ceria cap layer was consumed by the growth of BaCeO3 after 2 h at 760 °C in the MOD process examined. BaCeO3 growth was substantially slower at 725 °C; only 25 ± 3% of the ceria layer reacted.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Paranthaman, M.P. and Izumi, T.: High-performance YBCO-coated superconductor wires. MRS Bull. 29(8), 533 (2004).CrossRefGoogle Scholar
2Sathyamurthy, S., Paranthaman, M., Heatherly, L., Martin, P.M., Specht, E.D., Goyal, A., Kodenkandath, T., Li, X., and Rupich, M.W.: Solution-processed lanthanum zirconium oxide as a barrier layer for high Ic-coated conductors. J. Mater. Res. 21, 910 (2006).CrossRefGoogle Scholar
3Paranthaman, M. Parans, Sathyamurthy, S., Bhuiyan, M.S., Goyal, A., Kodenkandath, T., Li, X., Zhang, W., Thieme, C.L.H., Schoop, U., Verebelyi, D.T., and Rupich, M.W.: Improved YBCO coated conductors using alternate buffer architectures. IEEE Trans. Appl. Supercond. 15, 2632 (2005).CrossRefGoogle Scholar
4Foltyn, S.R., Wang, H., Civale, L., Jia, Q.X., Arendt, P.N., Maiorov, B., Li, Y., Maley, M.P., and MacManus-Driscoll, J.L.: Overcoming the barrier to 1000 A/cm-width superconducting coatings. Appl. Phys. Lett. 87, 162505 (2005).CrossRefGoogle Scholar
5Nakaoka, K., Tokunaga, Y., Matsuda, J.S., Fuji, H., Koyama, S., Teranishi, R., Izumi, T., Shiohara, Y., Watanabe, T., Yamada, Y., Goto, T., Yoshinaka, A., and Yajima, A.: Fabrication of YBCO coated conductors using advanced TFA-MOD process. Physica C 426–431, 954 (2005).CrossRefGoogle Scholar
6Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Mestres, N., Coll, M., Cavallaro, A., Roma, N., Gazquez, J., Gonzalez, J.C., Castano, O., Gutierrez, J., Palau, A., Zalamova, K., Morlens, S., Hassini, A., Gibert, M., Ricart, S., Moreto, J.M., Pinol, S., Isfort, D., and Bock, J.: Progress towards all-chemical superconducting YBa2Cu3O7-coated conductors. Supercond. Sci. Technol. 19, S13 (2006).CrossRefGoogle Scholar
7Holesinger, T.G., Foltyn, S.R., Arendt, P.N., Kung, H., Jia, Q.X., Dickerson, R.M., Dowden, P.C., DePaula, R.F., Groves, J.R., and Coulter, J.Y.: The microstructure of continuously processed YBa2Cu3Oy coated conductors with underlying CeO2 and ion-beam-assisted yttria-stabilized zirconia buffer layers. J. Mater. Res. 15, 1110 (2000).CrossRefGoogle Scholar
8Wong-Ng, W., Yang, Z., Cook, L.P., Huang, Q., Kaduk, J.A., and Frank, J.: Chemical interaction between Ba2YCu3O6+ x and CeO2 at p O2 = 100 Pa. Solid State Sci. 7, 1333 (2005).CrossRefGoogle Scholar
9Wong-Ng,  . W.K., Cook, L.P., Levin, I., Yang, Z., Vaudin, M., Ritter, J., and Feenstra, R.: Phase relations of high Tc Ba2RCu3O6+x superconductors, in Recent Advances in Superconductivity, edited by Civale, L., Cantoni, C., Feldman, M. and Obradors, X. (Mater. Res. Soc. Symp. Proc. 946E, Warrendale, PA, 2006), p. HH2.9.Google Scholar
10Matsuda, J.S., Tokunaga, Y., Nakaoka, K., Teranishi, R., Aoki, Y., Fuji, H., Yajima, A., Yamada, Y., Izumi, T., and Shiohara, Y.: Transmission electron microscopic studies on crystallization of YBa2Cu3O7-y films deposited by advanced TFA-MOD method. Physica C 426–431, 1051 (2005).CrossRefGoogle Scholar
11Skofronick, G.L., Carim, A.H., Foltyn, S.R., and Muenchausen, R.E.: Interfacial reaction-products and film orientation in YBa2Cu3O7-x on zirconia substrates with and without CeO2 buffer layers. J. Mater. Res. 8, 2785 (1993).CrossRefGoogle Scholar
12Rupich, M.W., Verebelyi, D.T., Zhang, W., Kondenkandath, T., and Li, X.: Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29(8), 572 (2004).CrossRefGoogle Scholar
13Gray, K.E., Miller, D.J., and Maroni, V.A.: Coordinated Characterization of Coated Conductors: Department of Energy Superconductivity for Electric System 2005 Annual Peer Review (Department of Energy, Washington, DC, 2005).Google Scholar
14Wesolowski, D.E. and Cima, M.J.: Nitrate-based metalorganic deposition of CeO2 on yttrium-stabilized zirconium. J. Mater. Res. 21, 1 (2006).CrossRefGoogle Scholar
15Yoshizumi, M., Wesolowski, D.E., and Cima, M.J.: Determination of HF partial pressure during ex situ conversion of YBCO precursors. Physica C 423, 75 (2005).CrossRefGoogle Scholar
16Pomar, A., Coll, M., Cavallaro, A., Gàzquez, J., Mestres, N., Sandiumenge, F., Puig, T., and Obradors, X.: Interface control in all metalorganic deposited coated conductors: Influence on critical currents. J. Mater. Res. 21, 2176 (2006).CrossRefGoogle Scholar
17Wesolowski, D.E., Yoshizumi, M., and Cima, M.J.: Trajectory-property relationships in MOD-derived YBCO films. Physica C 450, 76 (2006).CrossRefGoogle Scholar
18Feldmann, D.M., Holesinger, T.G., Cantoni, C., Feenstra, R., Nelson, N.A., Larbalestier, D.C., Verebelyi, D.T., Li, X., and Rupich, M.: Grain orientations and grain boundary networks of YBa2Cu3O7-δ films deposited by metalorganic and pulsed laser deposition on biaxially textured Ni-W substrates. J. Mater. Res. 21, 923 (2006).CrossRefGoogle Scholar