Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T02:49:24.704Z Has data issue: false hasContentIssue false

Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions

Published online by Cambridge University Press:  31 January 2011

Katsuhisa Tanaka
Affiliation:
Division of Material Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
Koji Fujita
Affiliation:
Division of Material Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
Nobuaki Matsuoka
Affiliation:
Division of Material Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
Kazuyuki Hirao
Affiliation:
Division of Material Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
Naohiro Soga
Affiliation:
Division of Material Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
Get access

Extract

Measurements of Faraday and Mössbauer effects have been performed at room temperature for alkali silicate glasses containing a large amount of Eu2+ ions to examine the relation between local structure and magnitude of Verdet constant. The Mössbauer spectra indicate that about 80% of europium ions are present as a divalent state. The effective transition wavelength and effective transition probability for the 4f7 → 4f65d transition of Eu2+, which causes the Faraday effect, are derived from the wavelength dependence of Verdet constant. Both effective transition wavelength and effective transition probability are large compared with borate glasses, leading to the large magnitude of Verdet constant of the alkali silicate glasses. The variation of effective transition wavelength with glass composition is connected with the change of 6s-electron density of Eu2+ evaluated from the Mössbauer spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Verhelst, R. A., Kline, R. W., De Graaf, A. M., and Hooper, H. O., Phys. Rev. B 11, 4427 (1975).CrossRefGoogle Scholar
2.Jamet, J. P., Dumais, J. C., Seiden, J., and Knorr, K., J. Magn. Magn. Mater. 15–18, 197 (1980).CrossRefGoogle Scholar
3.Sanchez, J. P., Friedt, J. M., Horne, R., and Van Duyneveldt, A. J., J. Phys. C 17, 127 (1984).CrossRefGoogle Scholar
4.Renard, J. P., Miranday, J. P., and Varret, F., Solid State Commun. 35, 41 (1980).CrossRefGoogle Scholar
5.Moon, D. W., Aitken, J. M., MacCrone, R. K., and Cieloszyk, G. S., Phys. Chem. Glasses 16, 91 (1975).Google Scholar
6.Laville, H. and Bernier, J. C., J. Mater. Sci. 15, 73 (1980).CrossRefGoogle Scholar
7.Tanaka, K. and Soga, N., J. Non-Cryst. Solids 95 & 96, 255 (1987).CrossRefGoogle Scholar
8.Tanaka, K., Kamiya, K., Yoko, T., Tanabe, S., Hirao, K., and Soga, N., Phys. Chem. Glasses 32, 16 (1991).Google Scholar
9.Rubinstein, C. B., Berger, S. B., Van Uitert, L. G., and Bonner, W. A., J. Appl. Phys. 35, 2338 (1964).CrossRefGoogle Scholar
10.Berger, S. B., Rubinstein, C. B., Kurkjian, C. R., and Treptow, A. W., Phys. Rev. 133, A723 (1964).CrossRefGoogle Scholar
11.Pye, L. D., Cherukuri, S. C., Mansfield, J., and Loretz, T., J. Non-Cryst. Solids 56, 99 (1983).CrossRefGoogle Scholar
12.Letellier, V., Seignac, A., Le Floch, A., and Matecki, M., J. Non-Cryst. Solids 111, 55 (1989).CrossRefGoogle Scholar
13.Kohli, J. T. and Shelby, J. E., Phys. Chem. Glasses 32, 109 (1991).Google Scholar
14.Petrovskii, G. T., Edelman, I. S., Zarubina, T. V., Malakhovskii, A. V., Zabluda, V. N., and Ivanov, M.Yu., J. Non-Cryst. Solids 130, 35 (1991).CrossRefGoogle Scholar
15.Asahara, Y., J. Ceram. Soc. Jpn. 99, 903 (1991).CrossRefGoogle Scholar
16.Shafer, M. W. and Suits, J. C., J. Am. Ceram. Soc. 49, 261 (1966).CrossRefGoogle Scholar
17.Schoenes, J., Kaldis, E., Thöni, W., and Wachter, P., Phys. Status Solidi A 51, 173 (1979).CrossRefGoogle Scholar
18.Tanaka, K., Hirao, K., and Soga, N., Jpn. J. Appl. Phys. 34, 4825 (1995).CrossRefGoogle Scholar
19.Qiu, J., Qiu, J. B., Higuchi, H., Kawamoto, Y., and Hirao, K., J. Appl. Phys. 80, 5297 (1996).CrossRefGoogle Scholar
20.Van Vleck, J. H. and Hebb, M. H., Phys. Rev. 46, 17 (1934).CrossRefGoogle Scholar
21.Shenoy, G. K. and Dunlap, B. D., Nucl. Instrum. Methods 71, 285 (1969).CrossRefGoogle Scholar
22.Chien, C-L., DeBenedetti, S., and De, F.Barros, S., Phys. Rev. B 10, 3913 (1974).CrossRefGoogle Scholar
23.Fujita, K., Tanaka, K., Hirao, K., and Soga, N., J. Am. Ceram. Soc. (in press).Google Scholar
24.Tanaka, K., Fujita, K., Soga, N., Qiu, J., and Hirao, K., J. Appl. Phys. 82, 840 (1997).CrossRefGoogle Scholar
25.Berkooz, O., J. Phys. Chem. Solids 30, 1763 (1969).CrossRefGoogle Scholar
26.Coey, J. M. D., MCevoy, A., and Shafer, M. W., J. Non-Cryst. Solids 43, 387 (1981).CrossRefGoogle Scholar
27.Winterer, M., Mörsen, E., Mosel, B. D., and Müller-Warmuth, W., J. Phys. C 20, 5389 (1987).CrossRefGoogle Scholar
28.Dillon, J. F. Jr., J. Appl. Phys. 39, 922 (1968).CrossRefGoogle Scholar
29.Takeuchi, H., Jpn. J. Appl. Phys. 14, 1903 (1975).CrossRefGoogle Scholar
30.Koyanagi, T., Matsubara, K., Takaoka, H., and Takagi, T., J. Appl. Phys. 61, 3020 (1987).CrossRefGoogle Scholar