Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:31:19.782Z Has data issue: false hasContentIssue false

Large area ultra-thin graphene films for functional photovoltaic devices

Published online by Cambridge University Press:  23 July 2018

Mallika Dasari
Affiliation:
Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
Matthew P. Hautzinger
Affiliation:
Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
Haiyan Fan-Hagenstein
Affiliation:
Department of Chemistry, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan
Brice Adam Russell
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, USA
Aldo D. Migone
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, USA
Punit Kohli*
Affiliation:
Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Graphene possesses exceptional mechanical, electrical, and thermal properties that stand out for numerous applications in materials and energy-related areas. The growing demand to produce high-quality large-scale graphene films inexpensively remains a challenge. The work presented in this paper emphasizes a straightforward method of producing high-quality graphene films using cellulose as the starting materials. We demonstrate the synthesis of defect-free graphene films (as thin as ∼10 layers) on substrates up to 7 cm2 in area. Graphitic films were characterized using Infrared Raman, energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), scanning electron microcopy SEM, and high-resolution transmission electron microscopy (HRTEM). Our XRD, Raman, and HRTEM studies indicated that the synthetic temperature was critical in the synthesis of high-quality graphene films using cellulose as the carbon source material. Systematic studies revealed that defect-free large area graphitic films were produced at a synthetic temperature of ∼900 °C. The Raman D band peak intensity decreased for the samples synthesized at higher temperature but was absent for the samples prepared at 900 °C. Both the HRTEM and selected area electron diffraction confirm the highly ordered arrangement of carbon atoms in the sample matrix. The measured distance between lattice fringes was 0.335 nm, which matches with the literature reported fringe distance for the high-quality graphene. The XRD spectrum of the thin graphitic samples synthesized at 900 °C displayed a sharp diffraction peak 2θ–26.5° characteristic of highly crystalline defect-free graphene. Functional photodetector and photovoltaic (PV) devices were fabricated using graphitic films. The graphitic films were used as one of the electrodes for the PV devices yielded a power conversion efficiency of ∼1%. Our synthetic method can be potentially used for producing high-quality free-standing graphene films inexpensively at large-scale.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Dos Santos, J.L., Nilsson, J., Guinea, F., Geim, A.K., and Neto, A.C.: Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).CrossRefGoogle ScholarPubMed
Allen, M.J., Tung, V.C., and Kaner, R.B.: Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132145 (2009).CrossRefGoogle Scholar
Zhang Tan, Y., Stormer, H.L., and Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201204 (2005).CrossRefGoogle Scholar
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902907 (2008).CrossRefGoogle ScholarPubMed
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388 (2008).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., and Firsov, A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197200 (2005).CrossRefGoogle ScholarPubMed
Nilsson, J., Neto, A.C., Guinea, F., and Peres, N.M.R.: Electronic properties of graphene multilayers. Phys. Rev. Lett. 97, 266801 (2006).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).CrossRefGoogle ScholarPubMed
Sun, Y., Wu, Q., and Shi, G.: Graphene based new energy materials. Energy Environ. Sci. 4, 11131132 (2011).CrossRefGoogle Scholar
Guo, S., Du, Y., Yang, X., Dong, S., and Wang, E.: Solid-state label-free integrated aptasensor based on graphene-mesoporous silica–gold nanoparticle hybrids and silver microspheres. Anal. Chem. 83, 80358040 (2011).CrossRefGoogle ScholarPubMed
Anchal, S., Gowda, S.R., Gullapalli, H., Dubey, M., Reddy, A.L.M., and Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 63376342 (2010).Google Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., and Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).CrossRefGoogle ScholarPubMed
Kim, J.S., Granström, M., Friend, R.H., Johansson, N., Salaneck, W.R., Daik, R., Feast, W.J., and Cacialli, F.: Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. J. Appl. Phys. 84, 68596870 (1998).CrossRefGoogle Scholar
Rakhshani, A.E., Makdisi, Y., and Ramazaniyan, H.A.: Electronic and optical properties of fluorine-doped tin oxide films. J. Appl. Phys. 83, 10491057 (1998).CrossRefGoogle Scholar
Geim, A.K.: Graphene: Status and prospects. Science 324, 15301534 (2009).CrossRefGoogle ScholarPubMed
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., and Banerjee, S.K.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 13121314 (2009).CrossRefGoogle ScholarPubMed
Park, S. and Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217224 (2009).CrossRefGoogle ScholarPubMed
Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., and Tour, J.M.: Growth of graphene from solid carbon sources. Nature 468, 549552 (2010).CrossRefGoogle ScholarPubMed
Srivastava, A., Galande, C., Ci, C.L., Song, L., Rai, C., Jariwala, D., Kelly, K.F., and Ajayan, P.M.: Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem. Mater. 22, 34573461 (2010).CrossRefGoogle Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 3035 (2008).CrossRefGoogle Scholar
Sutter, P.W., Flege, J.I., and Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7, 406411 (2008).CrossRefGoogle ScholarPubMed
Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., and Ruoff, R.S.: Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 15931597 (2009).CrossRefGoogle Scholar
Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., and Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
Glatzel, S., Schnepp, Z., and Giordano, C.: From paper to structured carbon electrodes by inkjet printing. Angew. Chem., Int. Ed. 52, 23552358 (2013).CrossRefGoogle ScholarPubMed
De, S. and Coleman, J.N.: Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 27132720 (2010).CrossRefGoogle ScholarPubMed
Jiang, K., Feng, C., Liu, K., and Fan, S.: A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes. J. Nanosci. Nanotechnol. 7, 14941504 (2007).CrossRefGoogle ScholarPubMed
Brunauer, S., Emmet, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309319 (1938).CrossRefGoogle Scholar
Kjems, J.K., Passell, L., Taub, H., Dash, J., and Novaco, A.D.: Neutron scattering study of nitrogen adsorbed on basal-plane-oriented graphite. Phys. Rev. B 13, 14461462 (1976).CrossRefGoogle Scholar
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R.N.: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 20642110 (2008).CrossRefGoogle ScholarPubMed
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 39063924 (2010).CrossRefGoogle ScholarPubMed
Herring, A.M., McKinnon, J.T., McCloskey, B.D., Filley, J., Gneshin, K.W., Pavelka, R.A., Kleebe, H.J., and Aldrich, D.J.: A novel method for the templated synthesis of homogeneous samples of hollow carbon nanospheres from cellulose chars. J. Am. Chem. Soc. 125, 99169917 (2003).CrossRefGoogle ScholarPubMed
Ray, A.K., Chatterjee, S., Singh, J.K., and Bapari, H.: Thermal exfoliation of natural cellulosic material for graphene synthesis. J. Mater. Eng. Perform. 24, 8084 (2015).CrossRefGoogle Scholar
Adolfsson, K.H., Hassanzadeh, S., and Hakkarainen, M.: Valorization of cellulose and waste paper to graphene oxide quantum dots. RSC Adv. 5, 2655026558 (2015).CrossRefGoogle Scholar
Volperts, A., Dobele, G., Zhurinsh, A., Vervikishko, D., Shkolnikov, E., Ozolinsh, J., Mironova-Ulmane, N., and Sildos, I.: Highly porous wood based carbon materials for supercapacitors. IOP Conf. Ser.: Mater. Sci. Eng. 77, 012016 (2015).CrossRefGoogle Scholar
Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., and Roth, S.: The structure of suspended graphene sheets. Nature 446, 6063 (2007).CrossRefGoogle ScholarPubMed
Shih, C.J., Vijayaraghavan, A., Krishnan, R., Sharma, R., Han, J.H., Ham, M.H., Jin, Z., Lin, S., Paulus, G.L., Reuel, N.F., and Wang, Q.H.: Bi-and trilayer graphene solutions. Nat. Nanotechnol. 6, 439445 (2011).CrossRefGoogle ScholarPubMed
Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., and Yao, J.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 81928195 (2008).CrossRefGoogle Scholar
Malard, L.M., Pimenta, M.A.A., Dresselhaus, G., and Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 5187 (2009).CrossRefGoogle Scholar
Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Novoselov, K.S., Basko, D.M., and Ferrari, A.C.: Raman spectroscopy of graphene edges. Nano Lett. 9, 14331441 (2009).CrossRefGoogle ScholarPubMed
Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., and Dresselhaus, M.S.: Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413550 (2011).CrossRefGoogle Scholar
Capasso, A., Dikonimos, T., Sarto, F., Tamburrano, A., De Bellis, G., Sarto, M.S., Faggio, G., Malara, A., Messina, G., and Lisi, N.: Nitrogen-doped graphene films from chemical vapor deposition of pyridine: Influence of process parameters on the electrical and optical properties. J. Nanotechnol. 6, 20282038 (2015).Google ScholarPubMed
Cançado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Coelho, L.N., Magalhães-Paniago, R., and Pimenta, M.A.: General equation for the determination of the crystallite size of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006).CrossRefGoogle Scholar
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 4757 (2007).CrossRefGoogle Scholar
Koh, A.T.T., Foong, Y.M., and Chua, D.H.: Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. Appl. Phys. Lett. 97, 4102 (2010).CrossRefGoogle Scholar
Rodrigues Filho, G., da Cruz, S.F., Pasquini, D., Cerqueira, D.A., de Souza Prado, V., and de Assunção, R.M.N.: Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse. J. Membr. Sci. 177, 225231 (2000).CrossRefGoogle Scholar
Rodrigues Filho, G., de Assunção, R.M., Vieira, J.G., Meireles, C.D.S., Cerqueira, D.A., da Silva Barud, H., Ribeiro, S.J., and Messaddeq, Y.: Characterization of methylcellulose produced from sugar cane bagasse cellulose: Crystallinity and thermal properties. Polym. Degrad. Stab. 92, 205210 (2007).CrossRefGoogle Scholar
Drits, V., Srodon, J., and Eberl, D.D.: XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation. Clay Clay Miner. 45, 461475 (1997).CrossRefGoogle Scholar
Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
Tang, M.M. and Bacon, R.: Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon 2, 211220 (1964).CrossRefGoogle Scholar
Scheirs, J., Camino, G., and Tumiatti, W.: Overview of water evolution during the thermal degradation of cellulose. Eur. Polym. J. 37, 933942 (2001).CrossRefGoogle Scholar
Shafizadeh, F. and Bradbury, A.G.W.: Thermal degradation of cellulose in air and nitrogen at low temperatures. J. Appl. Polym. Sci. 23, 14311442 (1979).CrossRefGoogle Scholar
Krivoruchko, O.P. and Zaikovskii, V.I.: Formation of liquid phase in the carbon-metal system at unusually low temperature. Kinet. Catal. 39, 561570 (1998).Google Scholar
Sevilla, M. and Fuertes, A.B.: The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47, 22812289 (2009).CrossRefGoogle Scholar
Jiang, K., Feng, C., Liu, K., and Fan, S.: A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes. J. Nanosci. Nanotechnol. 7, 14941504 (2007).CrossRefGoogle ScholarPubMed
Hulteen, J.C. and Martin, C.R.: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 10751087 (1997).CrossRefGoogle Scholar
Grancini, G., Maiuri, M., Fazzi, D., Petrozza, A., Egelhaaf, H.J., Brida, D., Cerullo, G., and Lanzani, G.: Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 2933 (2013).CrossRefGoogle ScholarPubMed
Li, G., Zhu, R., and Yang, Y.: Polymer solar cells. Nat. Photon. 6, 153161 (2012).CrossRefGoogle Scholar
Keizer, J.: Nonlinear fluorescence quenching and the origin of positive curvature in Stern–Volmer plots. J. Am. Chem. Soc. 105, 14941498 (1983).CrossRefGoogle Scholar
Wang, J., Wang, D., Moses, D., and Heeger, A.J.: Dynamic quenching of 5-(2′-ethyl-hexyloxy)-p-phenylene vinylene (MEH–PPV) by charge transfer to a C60 derivative in solution. J. Appl. Polym. Sci. 82, 25532557 (2001).CrossRefGoogle Scholar
Kaake, L., Dang, X.D., Leong, W.L., Zhang, Y., Heeger, A., and Nguyen, T.Q.: Effects of impurities on operational mechanism of organic bulk heterojunction solar cells. Adv. Mater. 25, 17061712 (2013).CrossRefGoogle ScholarPubMed
Ohkita, H., Cook, S., Astuti, Y., Duffy, W., Tierney, S., Zhang, W., Heeney, M., McCulloch, I., Nelson, J., Bradley, D.D., and Durrant, J.R.: Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. J. Am. Chem. Soc. 130, 30303042 (2008).CrossRefGoogle ScholarPubMed
Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T., and Hummelen, J.C.: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841843 (2001).CrossRefGoogle Scholar
Li, S.S., Tu, K.H., Lin, C.C., Chen, C.W., and Chhowalla, M.: Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4, 31693174 (2010).CrossRefGoogle ScholarPubMed
Giovannetti, G., Khomyakov, P.A., Brocks, G., Karpan, V.M., van den Brink, J., and Kelly, P.J.: Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).CrossRefGoogle ScholarPubMed
Kyas, A., Fleischhauer, J., Steinmetz, E., and Wilhelmi, H.: Investigations concerning the work function of doped graphite. Plasma Chem. Plasma Process. 13, 223235 (1993).CrossRefGoogle Scholar
Hölzl, J. and Schulte, F.K.: Work function of metals. In Solid Surface Physics (Springer, Berlin, Heidelberg, 1979); pp. 1150.CrossRefGoogle Scholar

Dasari et al. supplementary material

Movie S1

Download Dasari et al. supplementary material(Video)
Video 5.9 MB
Supplementary material: File

Dasari et al. supplementary material

Figures S1-S7

Download Dasari et al. supplementary material(File)
File 5.2 MB