Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T01:47:49.173Z Has data issue: false hasContentIssue false

Lanthanum molybdenum oxide: Low-temperature synthesis and characterization

Published online by Cambridge University Press:  01 May 2006

S. Basu
Affiliation:
Electroceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India
P. Sujatha Devi*
Affiliation:
Electroceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India
H.S. Maiti
Affiliation:
Electroceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India
Y. Lee
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
J.C. Hanson
Affiliation:
Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A recently developed fast oxide ion conductor, namely lanthanum molybdenum oxide (La2Mo2O9, LAMO), was synthesized instantaneously by a citrate-nitrate auto-ignition process at a fixed citrate to nitrate ratio of 0.3 and characterized by thermal analysis, x-ray diffraction, impedance spectroscopy, and thermal expansion measurements. Crystalline LAMO has formed instantaneously during the combustion process. The signature of the order–disorder transition of stoichiometric LAMO around 570 °C was evident from differential thermal analysis, differential scanning calorimetry electrical conductivity, and thermal expansion measurements. Though the in situ x-ray measurements did not indicate any clear evidence of a phase transition, a stepwise change in the lattice parameter near the vicinity of the transition temperature was apparent thereby confirming the phase transition to be of first order in nature. The thermal expansion coefficient of LAMO was calculated to be 13.92 × 10−6/°K at 950 °C. The present method formed phase pure LAMO instantaneously and produced sintered samples with high conductivity, namely, 0.052 S/cm at 800 °C and 0.08 S/cm at 950 °C compared to LAMO prepared through various other solution routes.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Subbarao, E.C. Zirconia—An overview in advances in ceramics, in Science and Technology of Zirconia I, Vol. 3, edited by Heuer, A.H. and Hobbs, L.W. (Am. Ceram. Soc., Columbus, OH, 1981), pp. 124.Google Scholar
2.Inaba, H., Tagawa, H.: Ceria-based solid electrolytes. Solid State Ionics 83, 1 (1996).CrossRefGoogle Scholar
3.Harwig, H.A., Gerards, A.G.: Electrical properties of the α, β, γ and δ phases of bismuth sesquioxides. J. Solid State Chem. 26, 265 (1978).CrossRefGoogle Scholar
4.Ishihara, T., Matsuda, H., Takita, Y.: Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801 (1994).CrossRefGoogle Scholar
5.Grover, W., Dennis, C., Readey, V.: Proton conductivity measurements in yttrium barium cerate by impedance spectroscopy. J. Am. Ceram. Soc. 85, 2637 (2002).Google Scholar
6.Abraham, H., Boivin, J.C., Mairesse, G., Nowogrocki, G.: The BIMEVOX series: A new family of high performances oxide ion conductors. Solid State Ionics 40–41, 934 (1990).CrossRefGoogle Scholar
7.Kramer, S.A., Tuller, H.L.: Semiconduction and mixed ionic-electronic conduction in nonstoichiometric oxides: Impact and control. Solid State Ionics 94, 63 (1997).Google Scholar
8.Kramer, S.A., Tuller, H.L.: A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82, 15 (1995).CrossRefGoogle Scholar
9.Boivin, J.C., Mairesse, G.: Recent material developments in fast oxide ion conductors. Chem. Mater. 10, 2870 (1998).CrossRefGoogle Scholar
10.Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R., Laligant, Y.: Designing fast oxide-ion conductors based on LAMO. Nature 404, 856 (2000).CrossRefGoogle Scholar
11.Goutenoire, F., Isnard, O., Retoux, R., Lacorre, P.: Crystal structure of LAMO, a new fast oxide–ion conductor. Chem. Mater. 12, 2575 (2000).CrossRefGoogle Scholar
12.Goutenoire, F., Isnard, O., Suard, E., Bohnke, O., Laligant, Y., Retoux, R., Lacorre, P.: Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenum oxide LAMO. J. Mater. Chem. 11, 119 (2001).CrossRefGoogle Scholar
13.Lacorre, P., Retoux, R.: First direct synthesis by high-energy ball milling of a new lanthanum molybdate. J. Solid State Chem. 132, 443 (1997).CrossRefGoogle Scholar
14.Arulraj, A., Goutenoire, F., Tabellout, M., Bohnke, O., Lacorre, P.: Synthesis and characterization of the anionic conductor system LAMO−0.5xFx(x = 0.02–0.30). Chem. Mater. 14, 2492 (2002).CrossRefGoogle Scholar
15.Wang, X.P., Fang, F.: Effects of Ca doping on the oxygen ion diffusion and phase transition in oxide ion conductor LAMO. Solid State Ionics 146, 185 (2002).CrossRefGoogle Scholar
16.Wang, X.P., Fang, Q.F., Li, Z.S., Zhang, G.G., Yi, Z.G.: Dielectric relaxation studies of Bi-doping effects on the oxygen-ion diffusion in La2−xBixMo2O9 oxide-ion conductors. Appl. Phys. Lett. 81, 3434 (2002).CrossRefGoogle Scholar
17.Collado, J.A., Aranda, M.A.G., Cabeza, P., Oliver-Pastor, P., Bruque, S.: Synthesis, structures, and thermal expansion of the La2W2− xMoxO9 series. J. Solid State Chem. 167, 80 (2002).CrossRefGoogle Scholar
18.Khadasheva, Z.S., Venskovskii, N.U., Safrenko, M.G., Mosunov, A.V., Politova, E.D., Stefanovich, S.Yu.: Synthesis and properties of La2(Mo1−xMx)2O9 (M = Nb,Ta) ionic conductors. Inorg. Mater. 38, 1168 (2002).CrossRefGoogle Scholar
19.Georges, S., Goutenoire, F., Altorfer, D., Sheptyakov, F., Fauth, F., Suard, E., Lacorre, P.: Thermal, structural and transport properties of the fast oxide-ion conductors La2−xRxMo2O9 (R = Nd, Gd, Y). Solid State Ionics 161, 231 (2003).CrossRefGoogle Scholar
20.Georges, S., Goutenoire, F., Laligant, Y., Lacorre, P.: Reducibility of fast oxide-ion conductors La2− xRxMo2−y Wy O9 (R = Nd,Gd). J. Mater. Chem. 13, 2317 (2003).CrossRefGoogle Scholar
21.Hayward, S.A., Redfern, S.A.T.: Themodynamic nature of, and spontaneous strain below the cubic-monoclinic phase transition in LAMO. J. Phys.: Condens. Matter 16, 3571 (2004).Google Scholar
22.Basu, S., Devi, P.S., Maiti, H.S.: A potential low-temperature oxide-ion conductor: La2−xBaxMo2O9. Appl. Phys. Lett. 85, 3486 (2004).CrossRefGoogle Scholar
23.Rocha, R.A., Muccillo, E.N.S.: Synthesis and thermal decomposition of a polymericprecursor of the LAMO compound. Chem. Mater. 15, 4268 (2003).CrossRefGoogle Scholar
24.Subasri, R., Nafe, H., Aldinger, F.: On the electronic and ionic-transport properties of LAMO. Mater. Res. Bull. 38, 1965 (2003).CrossRefGoogle Scholar
25.Subasri, R., Matusch, D., Nafe, H., Aldinger, F.: Synthesis and characterization of (La1−x Mx)2Mo2O9−δ; M = Ca+2, Sr+2 or Ba+2. J. Eur. Ceram. Soc. 24, 129 (2004).CrossRefGoogle Scholar
26.Marozau, I.P., Marrero-Lopez, D., Shaula, A.L., Kharton, V.V., Tsipis, E.V., Nunez, P., Frade, J.R.: Ionic and electronic transport in stabilized β-LAMO electrolytes. Electrochim. Acta 49, 3517 (2004).CrossRefGoogle Scholar
27.Marrero-López, D., Ruiz-Morales, J.C., Nuńez, P., Abrantes, J.C.C., Frade, J.R.: Synthesis and characterization of LAMO obtained from freeze-dried precursors. J. Solid State Chem. 177, 2378 (2004).CrossRefGoogle Scholar
28.Tealdi, C., Chiodelli, G., Malavasi, L., Flor, G.: Effect of alkaline-doping on the properties of LAMO fast oxygen ion conductor. J. Mater. Chem. 14, 3553 (2004).CrossRefGoogle Scholar
29.Roy, S., Sharma, A. Das, Roy, S.N., Maiti, H.S.: Synthesis of YBa2Cu3O7−x powder by auto-ignition of citrate-nitrate gel. J. Mater. Res. 8, 2761 (1993).CrossRefGoogle Scholar
30.Devi, P.S., Maiti, H.S.: A novel auto-ignited combustion process for the synthesis of Bi–Pb–Sr–Ca–Cu–O superconductor with a T c(0)of 125 K. J. Solid State Chem. 109, 35 (1994).CrossRefGoogle Scholar
31.Chakraborty, A., Devi, P.S., Roy, S., Maiti, H.S.: Low-temperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by an auto-ignition process. J. Mater. Res. 9, 986 (1994).CrossRefGoogle Scholar
32.Chakraborty, A., Devi, P.S., Maiti, H.S.: Low temperature-temperature synthesis and some physical properties of barium substituted lanthanum manganite. J. Mater. Res. 10, 918 (1995).CrossRefGoogle Scholar
33.Chakraborty, N., Maiti, H.S.: Chemical synthesis of barium zirconate titanate powder by an autocombustion technique. J. Mater. Chem. 6, 1169 (1996).CrossRefGoogle Scholar
34.Purohit, R.D., Tyagi, A.K.: Auto-ignition synthesis of nanocrystalline BaTi4O9 powder. J. Mater. Chem. 12, 312 (2002).CrossRefGoogle Scholar
35.Basu, S., Devi, P.S., Maiti, H.S.: Synthesis and properties of nanocrystalline ceria powders. J. Mater. Res. 19, 3162 (2004).CrossRefGoogle Scholar
36.Devi, P.S., Lee, Y., Margolis, J., Parise, J.B., Sampath, S., Herman, H., Hanson, J.C.: Comparison of citrate-nitrate gel combustion and precursor plasama spray for the synthesis of yttrium aluminium garnet. J. Mater. Res. 17, 2846 (2002).CrossRefGoogle Scholar
37.Yu, M.H., Devi, P.S., Lewis, L.H., Gouma, P., Parise, J.B., Gambino, R.J.: Towards a magnetic core–shell nanostructure: A novel composite made by a citrate–nitrate auto-ignition process. Mater. Sci. Eng. B 103, 262 (2003).CrossRefGoogle Scholar
38.Guo, X., Devi, P.S., Ravi, B.G., Parise, J.B., Sampath, S., Hanson, J.C.: Phase evolution of yttrium aluminium garnet (YAG) in a citrate–nitrate gel combustion process. J. Mater. Chem. 14, 1288 (2004).CrossRefGoogle Scholar
39.Basu, S., Devi, P.S., Maiti, H.S.: Nb-doped LAMO: A new material with high ionic conductivity. J. Electrochem. Soc. 152, A2143 (2005).CrossRefGoogle Scholar
40.Yi, Z.G., Fang, Q.F., Wang, X.P., Zhang, G.G.: Dielectric relaxation studies on the submicron crystalline LAMO oxide-ion conductors. Solid State Ionics 160, 117 (2003).CrossRefGoogle Scholar